📚 Hub Books: Онлайн-чтение книгДомашняяПочему Е=mc?? И почему это должно нас волновать - Джефф Форшоу

Почему Е=mc?? И почему это должно нас волновать - Джефф Форшоу

Шрифт:

-
+

Интервал:

-
+
1 ... 46 47 48 49 50 51 52 53 54 55
Перейти на страницу:

Хотя пульсары достаточно распространены во Вселенной, существует только один известный пример их вращения вокруг друг друга. Радиоастрономы установили факт существования этого двойного пульсара в 2004 году, а последующие наблюдения позволили выполнить самую точную проверку общей теории относительности Эйнштейна.

Двойной пульсар – удивительный феномен. Теперь мы знаем, что он состоит из двух нейтронных звезд, расположенных на расстоянии около миллиона километров друг от друга. Представьте, насколько стремительна эта система. Две звезды, каждая из которых имеет массу Солнца, сжатую до размера крупного города, вращаются вокруг своей оси со скоростью сотни оборотов в секунду и двигаются вокруг друг друга на расстоянии, всего в три раза превышающем расстояние от Земли до Луны. Для тех ученых, которые занимаются проверкой теории Эйнштейна, преимущество системы из двух пульсаров состоит в том, что радиоволны от одного из них иногда проходят очень близко от другого. Это означает, что ультрарегулярный пучок электромагнитного излучения проходит через область сильно искривленного пространства-времени, которое задерживает его прохождение. Тщательные наблюдения позволяют измерить эту задержку и таким образом подтвердить состоятельность теории Эйнштейна.

Еще одно преимущество двойной системы пульсаров состоит в том, что их вращение вокруг друг друга создает в пространстве-времени пульсирующие волны, которые распространяются вовне. Эти волны уносят энергию от вращающегося движения пары звезд и заставляют их медленно двигаться по спирали внутрь системы. У этих волн есть свое имя – гравитационные волны, и их существование было предсказано теорией Эйнштейна (в ньютоновской теории гравитации таких волн не было). Не так давно ученым удалось добиться одного из величайших достижений в экспериментальной науке. С помощью 64-метрового телескопа Parkes в Австралии, 76-метрового телескопа Lovell в британском городе Джодрелл-Бэнк и 100-метрового телескопа Green Bank в Западной Вирджинии астрономы провели необходимые измерения и пришли к выводу, что скорость перемещения пульсаров по спирали внутрь системы составляет всего семь миллиметров в день, что полностью соответствует предсказанию общей теории относительности. Это поразительное открытие. Быстро вращающиеся нейтронные звезды двигаются вокруг друг друга на расстоянии в миллион километров и расположены в двух тысячах световых лет от Земли. Поведение этих звезд было предсказано с точностью до миллиметра с помощью теории, которую сформулировал еще в 1915 году человек, захотевший понять, почему два объекта, брошенные с Пизанской башни за три столетия до этого, упали на Землю одновременно.

Каким бы притягательным и загадочным ни было измерение параметров далекого двойного пульсара, общая теория ощутимо присутствует даже здесь, на Земле, в контексте гораздо более распространенного феномена. Система спутников GPS охватывает весь мир, а ее успешное функционирование зависит от точности теорий Эйнштейна. Действующая 24 часа в сутки сеть спутников расположена вокруг Земли на высоте 20 тысяч километров, причем каждый спутник ежедневно делает два полных оборота вокруг планеты. Эти спутники применяются для триангуляции местоположения различных объектов на Земле с использованием точных бортовых часов. Спутники, размещенные на такой высокой орбите, находятся в более слабом гравитационном поле, а это означает, что их пространство-время искривлено иначе, чем для аналогичных часов на Земле. В итоге часы на спутниках спешат на 45 микросекунд в день. Кроме этого гравитационного эффекта, спутники еще и движутся с высокой скоростью (около 14 тысяч километров в час), поэтому вследствие замедления времени, предсказанного специальной теорией относительности Эйнштейна, часы отстают на семь микросекунд в день. В совокупности эти два эффекта приводят к тому, что часы на орбите спешат на 38 микросекунд в день. На первый взгляд может показаться, что это не так уж много, но игнорирование данного эффекта привело бы к полному выходу системы GPS из строя всего за несколько часов. Свет перемещается со скоростью около 30 сантиметров за одну наносекунду, которая составляет одну тысячемиллионную долю секунды. Следовательно, 38 микросекунд эквивалентны десяти километрам в день, что сделало бы невозможной точную навигацию. Решить эту проблему весьма просто: для этого достаточно настроить спутниковые часы так, чтобы они отставали на 38 микросекунд в день, – это позволит системе работать с точностью до метров, а не километров.

Эффект часов, размещенных на спутниках системы GPS и спешащих по сравнению с часами на Земле, легче понять с помощью материала, изложенного в данной главе. Фактически ускорение часов представляет собой прямое следствие принципа эквивалентности. Для того чтобы разобраться с этим, давайте мысленно перенесемся в 1959 год, в лабораторию Гарвардского университета. Роберт Паунд[64] и Глен Ребка[65] решили провести эксперимент, позволяющий «уронить» свет с крыши лаборатории в подвал, расположенный на 22,5 метра ниже. Если свет будет падать в строгом соответствии с принципом эквивалентности, то по мере его падения энергия должна увеличиваться в точности на ту же величину, что и в случае любого другого предмета, брошенного с этой же высоты[66]. Нам необходимо знать, что произойдет со светом по мере увеличения энергии. Другими словами, что Паунд и Ребка рассчитывали увидеть в подвале лаборатории в момент прибытия лучей света? Существует единственный способ, позволяющий свету увеличивать свою энергию. Мы знаем, что свет не может повысить скорость, поскольку уже перемещается с универсальной предельной скоростью, однако может увеличить частоту. Помните: свет можно рассматривать как волновое движение – серию пиков и впадин, напоминающих волны, распространяющиеся на поверхности пруда от брошенного камня. Частота таких волн – это просто количество пиков (или впадин), проходящих через конкретную точку каждую секунду, а пики и впадины можно использовать в качестве тактового сигнала часов. В частности, представьте, что в ходе эксперимента Паунд находится рядом с источником света на крыше башни.

Он может подсчитать, сколько пиков световой волны приходится на один удар его сердца. Теперь предположим, что Ребка также находится рядом с аналогичным источником света. Он тоже может подсчитать, какое количество пиков волны соответствует одному удару его сердца. Ответ Ребки должен совпадать с ответом его коллеги, так как у них идентичные источники света и идентичные сердца. Конечно, они получат абсолютно одинаковые показатели только в том случае, если у них одинаковые сердца, а это не так. Но допустим, что их сердца действительно бьются как одно. Теперь представьте, что Ребка, сидя в подвале, наблюдает за тем, как прибывает свет, выпущенный из источника света Паунда, расположенного на крыше. Свет увеличил свою энергию, а значит, повысилась его частота, и Ребка обнаружит, что пики световых волн прибывают чаще, чем в случае, когда их испускает расположенный рядом источник света. Однако эти пики синхронизированы с частотой пульса его коллеги. Это означает, что в восприятии сидящего в подвале Ребки сердце Паунда бьется чаще, а следовательно, он будет стареть быстрее. Это крохотный эффект, соответствующий ускорению времени на одну секунду за 13 миллионов лет. Следует отдать должное мастерству и изобретательности Паунда и Ребки, которым удалось разработать эксперимент, способный зафиксировать данный эффект. Именно такое ускорение времени происходит в часах, расположенных на спутниках системы GPS. Эти часы размещены гораздо выше, чем 22,5 метра в лаборатории Гарвардского университета, но основная идея та же: в более слабом гравитационном поле часы идут быстрее.

1 ... 46 47 48 49 50 51 52 53 54 55
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?