Закрученные пассажи. Проникая в тайны скрытых размерностей пространства - Лиза Рэндалл
Шрифт:
Интервал:
Когда бета-распад был впервые зарегистрирован, никто ничего не знал о нейтрино, которое участвует только в слабых взаимодействиях, но не в электромагнитных. В то же время детекторы частиц могут обнаружить только заряженные частицы или те частицы, которые выделяют энергию. Так как нейтрино не имеет электрического заряда и не распадается, оно остается невидимым для детекторов, так что никто не знал о его существовании.
Однако без нейтрино бета-распад выглядел так, как будто в нем не сохранялась энергия. Закон сохранения энергии является фундаментальным принципом всей физики. Он утверждает, что энергия не может ни возникать, ни уничтожаться, а может только переноситься из одного места в другое. Предположение о том, что в бета-распаде не сохраняется энергия, было возмутительным, однако многие уважаемые физики[94], не имевшие представления о существовании нейтрино, были готовы согласиться с таким радикальным (и ошибочным) утверждением.
В 1930 году Вольфганг Паули предложил путь к научному спасению скептиков, который он сам назвал «отчаянной попыткой» — он предположил существование новой электрически нейтральной частицы[95]. Идея Паули состояла в том, что нейтрино тайком крадет часть энергии, выделяющейся при распаде нейтрона. Тремя годами спустя Энрико Ферми дал солидное теоретическое обоснование существования «маленькой» нейтральной частицы, которую он назвал нейтрино[96]. Тем не менее гипотеза о существовании нейтрино представлялась в те времена настолько сомнительным выходом из положения, что ведущий научный журнал Nature отклонил статью Ферми, так как «она содержала размышления, слишком далекие от интересов читателя».
Однако идеи Паули и Ферми были правильными, и в наши дни физики полностью согласны с существованием нейтрино[97]. На самом деле, мы знаем сейчас, что нас непрерывно пронизывают потоки нейтрино, рождающихся вместе с фотонами в ядерных реакциях на Солнце. Ежесекундно сквозь нас проходят триллионы солнечных нейтрино, но их взаимодействия столь слабы, что мы этого никогда не замечаем. Те нейтрино, в существовании которых мы твердо уверены, являются левыми; правые нейтрино либо не существуют, либо очень тяжелы, слишком тяжелы для того, чтобы рождаться, либо взаимодействуют очень слабо. Какая бы из гипотез ни оказалась правильной, правые нейтрино никогда не рождались на ускорителях, и мы их никогда не видели. Поскольку мы значительно более уверены в существовании левых, а не правых нейтрино, я показала на рис. 52, где приведены отдельно левые и правые частицы, только левые нейтрино.
Итак, мы знаем теперь, что слабые взаимодействия действуют только на левые частицы и могут менять тип частиц. Однако, чтобы по-настоящему понять слабые взаимодействия, нам нужна теория, предсказывающая взаимодействия слабых калибровочных бозонов, являющихся переносчиками слабых сил. Физики сразу же поняли, что построить такую теорию не так-то легко. Им потребовалось совершить ряд важных теоретических открытий, прежде чем действительно понять слабое взаимодействие и его следствия.
В конечном итоге проблема состояла в странном свойстве слабого взаимодействия — оно резко спадало на очень малом расстоянии 10-18 м. В этом оно полностью отличается от гравитации или электромагнетизма, для которых, как мы видели в гл. 2, напряженность поля уменьшается с расстоянием обратно пропорционально квадрату расстояния. Хотя при увеличении расстояния гравитация и электромагнетизм становятся все слабее, их интенсивность не спадает так же быстро, как слабое взаимодействие. Фотон переносит электромагнитное взаимодействие на большие расстояния. Почему слабое взаимодействие ведет себя совершенно иначе?
Было очевидно, что для объяснения ядерных процессов типа бета-распада физики должны найти новый тип взаимодействия, но было неясно, каким может быть это взаимодействие. До того, как Глэшоу, Вайнберг и Салам построили свою теорию слабого взаимодействия, Ферми попытался предложить теорию, включавшую новые типы взаимодействия четырех частиц, например, протона, нейтрона, электрона и нейтрино. Это взаимодействие Ферми непосредственно порождало бета-распад без обращения к промежуточному слабому калибровочному бозону. Иными словами, взаимодействие позволяло нейтрону непосредственно превращаться в свои продукты распада — протон, электрон и нейтрино.
Однако даже в то время было ясно, что теория Ферми не может быть правильной теорией, применимой при всех энергиях. Хотя при низких энергиях ее предсказания были правильными, при высоких энергиях они становились полностью неверными, приводя к слишком сильным взаимодействиям. Если предположить (что неверно), что теория Ферми применима к частицам большой энергии, то мы придем к бессмысленным предсказаниям вроде того, что частицы должны взаимодействовать с вероятностью больше единицы. Это невозможно, так как ничто не может случаться чаще, чем всегда.
Хотя теория, основанная на взаимодействии Ферми, была прекрасной эффективной теорией для объяснения взаимодействий при низких энергиях и между достаточно удаленными частицами, физики видели, что им нужно более фундаментальное объяснение процессов типа бета-распада, если они хотят знать, что происходит при высоких энергиях. Казалось, что теория, основанная на передаче взаимодействий слабыми калибровочными бозонами, должна намного лучше работать при высоких энергиях, однако никто не знал, как учесть короткодействующий характер слабого взаимодействия.
Малый радиус оказался следствием ненулевых масс слабых калибровочных бозонов. В физике частиц связи, накладываемые соотношением неопределенностей и специальной теорией относительности, имеют заметные следствия. В конце гл. 6 я обсуждала вопрос о наименьших расстояниях, на которых частица данной энергии, например, характерной энергии слабого взаимодействия или планковской энергии, может быть подвержена действию сил. В силу соотношения специальной теории относительности между энергией и массой (E = mc2) массивным частицам, например слабым калибровочным бозонам, автоматически присущи аналогичные соотношения между массой и расстоянием.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!