Футболоматика - Дэвид Самптер
Шрифт:
Интервал:
Когда я преподаю статистику в университете, мне нравится начинать с эксперимента. Я беру с собой банку, наполненную конфетами, и ставлю ее на стол в начале лекционного зала. Затем я прошу студентов взглянуть на банку и записать, сколько в ней конфет, по их мнению. Студент, который оказывается ближе всех к правильному числу, получает сладости. Им нельзя разговаривать с друзьями, и они передают мне свои догадки, не показывая их никому.
Когда я получаю все ответы, то делаю гистограмму результатов. Рисунок 11.1 – одна из таких гистограмм для одной из моих небольших групп. Гистограмма основана на догадках 19 студентов, изучающих вычислительную физику, и показывает количество предположений в каждом диапазоне. Эти студенты – одни из наиболее умных и трудолюбивых в нашем университете, поэтому интересно посмотреть, как они справляются с практической проблемой. Догадки были представлены в диапазоне от 37 до 300, причем довольно много было предположений, что конфет около 40–60, а некоторые полагали, что я достаточно щедр, чтобы раздавать несколько сотен сладостей. В среднем предположительное число конфет было равно 102, а медиана – 90 [129].
Рисунок 11.1. Гистограмма предположений моих студентов относительно количества конфет в банке.
Итак, сколько же там было конфет? В моей банке было ровно 104 конфеты, лишь в двух штуках от среднего значения. Ни один студент не угадал, поэтому сладости разделили между собой два студента, предположивших, что конфет 100. Но справедливости ради приз должен был быть разделен между ними всеми, поскольку среднее число догадки группы было ближе, чем предположение любого студента. Группа была коллективно мудрей любого человека.
Мой эксперимент – пример явления, известного как мудрость толпы. Эта идея берет начало в 2005 году, когда Джеймс Шуровьески опубликовал книгу с таким же названием[130]. Главное его утверждение состояло в том, что во многих задачах большие группы неспециалистов могут быть умнее меньшей группы специалистов. Моя игра с угадыванием конфет поддерживает этот тезис: вместе студенты показали лучший результат в подсчете конфет, чем любой человек в группе по отдельности[131].
Каждый год я изменяю контейнер и количество сладостей, но закономерность в результатах остается. Довольно много студентов преуменьшают число конфет, предполагая на 40–50 меньше реальной цифры. Однако небольшое количество студентов значительно преувеличивают число конфет, предполагая вдвое-втрое больше правильного ответа. При этом эти два типа угадывающих уравновешивают друг друга, и среднее число догадки получается близким к истинному значению.
После того как книга Шуровьески была опубликована, две исследовательские группы провели такой эксперимент в большем масштабе, чем я. На выставке в Берлине Йенс Краузе и его брат Стефан собрали 2057 предположений о количестве шариков в большой стеклянной банке. Правильный ответ был 562. Догадки варьировались от 40 до 1500[132], но среднее значение расходилось всего на 8,4 шарика и было равно 553,6. Опять же толпа была довольно близка к правильному ответу. Эндрю Кинг и его коллеги провели аналогичный эксперимент с конфетами в банке во время дня открытых дверей в Королевском ветеринарном колледже[133]. На этот раз среднее значение существенно отличалось от верного ответа – 1396 против 751. Однако медиана была абсолютно верной, ровно 751[134].
Если вы любите время от времени делать ставки, эти эксперименты с мудростью толпы не стоит игнорировать. Вы можете думать, что знаете об игре больше других игроков (вы вполне можете быть правы), но дело не в этом. В экспериментах большинство участников не особенно хорошо угадывали количество шариков или конфет. В опыте Эндрю некоторые участники предполагали, что конфет больше 10 тысяч, в то время как другие люди считали, что меньше 50. Но как группа они оказались правы. Чтобы выиграть у букмекеров, вы должны прежде всего одолеть эту единую сущность, толпу, а не любого из людей, которые составляют толпу.
Чтобы понять, почему толпа – это проблема для вас как игрока-одиночки, рассмотрим рынок овер- и андербетов для угловых. Например, большинство букмекеров установило спред по угловым ударам 10–11. Игрок может поставить на то, что фактическое число будет превышать спред или окажется меньше. Поэтому, если вы думаете, что в матче будет больше 11 угловых, вы можете поставить 10 фунтов за каждый пункт сверху. Если угловых будет 16, то вы заработаете (16–11) × 10 = 50 фунтов, но если их будет всего 8, тогда вы заплатите букмекеру (11 – 8) × 10 = 30 фунтов.
То же правило применяется, если вы делаете ставку наоборот: вы платите (16–10) × 10 = 60 фунтов, если угловых 16, и выигрываете (10 – 8) × 10 = 20 фунтов, если их в матче 8. Фокус для букмекера заключается в том, чтобы установить такой спред, при котором половина игроков поставят на исход выше, а вторая половина – ниже. Если один человек поставит на овербет, а второй на андербет, то прибыль букмекера гарантировано составит 10 фунтов – вне зависимости от количества угловых в матче. Пока у букмекера сохраняется баланс «половина на половину», он зарабатывает и при этом не зависит от результата.
Я хочу, чтобы вы представили себя гением в мире людей, ничего не смыслящих в футболе. Другие игроки чаще всего ставят наугад, а букмекеры понятия не имеют, сколько угловых ударов может быть в футбольном матче. Но вы знаете, что среднее число угловых в матче составляет 10,5. Иногда чуть больше, иногда немного меньше, но в целом показатель между 9 и 12 вполне обычен для матча.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!