📚 Hub Books: Онлайн-чтение книгДомашняяКосмический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд

Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - Леонард Сасскинд

Шрифт:

-
+

Интервал:

-
+
1 ... 49 50 51 52 53 54 55 56 57 ... 117
Перейти на страницу:

Что произойдёт, если электрические силы станут такими же сильными, как и ядерные? Очевидно, что все составные ядра станут нестабильными, поэтому электрические силы должны быть слабее ядерных, чтобы по крайней мере ядра углерода и кислорода были стабильными. Почему же постоянная тонкой структуры мала?

Этого не знает никто, но если бы она была больше, то некому было бы задавать этот вопрос.

Протоны и нейтроны больше не считаются элементарными частицами. Каждый из них состоит из трёх кварков. Существуют несколько различных типов кварков: u-кварк, d-кварк, s-кварк, c-кварк, b-кварк и t-кварк. Имена у них малозначащие,[60] но различия между типами кварков очень важны. Если пробежаться по списку масс элементарных частиц, приведённому в главе 3, то можно обнаружить, что массы кварков варьируются в очень широких пределах: от порядка 10 масс электрона для u-кварка до 344 000 масс электрона для t-кварка. Долгое время физики ломали голову, почему t-кварк такой тяжёлый, но недавно пришли к пониманию, что это не t-кварк аномально тяжёлый, а u-кварк и d-кварк абсурдно лёгкие, и тот факт, что они в 20 000 раз легче, чем такие частицы, как Z-бозон и W-бозон, нуждается в объяснении. Стандартная модель такого объяснения предоставить не может.

Таким образом, мы можем задаться вопросом, на что был бы похож наш мир, если бы u-кварк и d-кварк были гораздо тяжелее. И опять ответом будет катастрофа. Протон и нейтрон состоят из u– и d-кварков (частицы, состоящие из s-, c-, b– и t-кварков, не играют никакой роли в обычной физике и химии и представляют интерес исключительно для специалистов в области высокоэнергетической физики). Согласно кварковой теории протонов и нейтронов, ядерные силы (силы, действующие между нуклонами) можно описать при помощи обмена кварками.[61] Если кварки утяжелить, нуклонам будет труднее ими обмениваться, и ядерные силы практически исчезнут. Без сил, склеивающих нуклоны вместе, не будет атомных ядер, не будет тяжёлых элементов, соответственно не будет атомов и, как следствие, не будет химии и нас с вами. Нам в очередной раз повезло.

Вспомним теперь, что в терминах Ландшафта наша Вселенная лежит в долине, все свойства которой удивительно хорошо подогнаны для возможности нашего существования. Но средний стандартный регион Ландшафта может сильно отличаться от нашей долины. Постоянная тонкой структуры там запросто может быть больше, чем у нас, фотоны – обладать массой, кварки – быть тяжелее, и более того, электроны, фотоны или кварки могут и вовсе отсутствовать в списке элементарных частиц. Любое из этих отличий сделает наше существование невозможным.

Даже если все стандартные частицы будут присутствовать в списке, иметь «правильные» массы и взаимодействовать с «правильными» силами, этого недостаточно для существования обычной химии. Необходимо ещё, чтобы электроны были фермионами. Следствием из того факта, что электроны являются фермионами, является невозможность нахождения в одном и том же квантовом состоянии более одного электрона – свойство, необходимое для существования химии. Если на электроны не будет действовать принцип запрета Паули, то все электроны в атоме «свалятся» на самую нижнюю орбиту, откуда их будет крайне тяжело выбить. Та химия, которая царит в нашем мире, полностью определяется принципом запрета Паули. Если электроны вдруг неожиданно станут бозонами, жизнь, основанная на химических соединениях углерода, станет невозможной. Как вы видите, мир, в котором возможна известная нам химия, далеко не универсальное явление.

Физики часто используют слова в ином смысле, нежели принято в обычной жизни. Когда мы говорим, что что-то существует, мы обычно подразумеваем, что это что-то может быть обнаружено где-то во Вселенной. Например, если я скажу, что существуют чёрные дыры, вы можете спросить: «Где можно найти хотя бы одну из них?» Чёрные дыры существуют в обычном смысле: это реальные астрономические объекты, которые находятся, например, в центрах галактик. Но предположим, я сообщаю вам о существовании миниатюрных чёрных дыр размером не больше пылинки. Вы снова можете задать резонный вопрос: «Где они находятся?» На этот раз я мог бы ответить, что я не знаю ни одной такой чёрной дыры. «Стоп! – воскликнете вы. – Кончайте вешать мне лапшу на уши! Вы же только что заявили, что они существуют!»

Когда физики (особенно теоретики) говорят, что что-то существует, они имеют в виду положительный ответ на вопрос, может ли это что-то теоретически существовать. Другими словами, в их понимании этот объект существует в виде решения уравнений в их теории. Согласно этому критерию, существуют идеальные бриллианты размером в несколько сотен километров. Точно так же существуют и планеты, состоящие из чистого золота. Они могут или не могут быть реально обнаружены, но их существование разрешено законами физики.

Дальнодействующее электрическое взаимодействие и короткодействующее сильное взаимодействие между фермионами приводит к существованию сложных атомов типа углерода, кислорода или железа. Это прекрасно, но я говорю об их существовании в теоретическом смысле. «Что же необходимо, – спросите вы, – чтобы сложные атомы существовали в нашем обыденном смысле? Что нужно, чтобы эти атомы реально образовывались во Вселенной в огромных количествах?» Ответ на этот вопрос не так прост. Сложные атомные ядра не образовывались в сколько-нибудь заметных количествах при столкновениях частиц на ранней горячей стадии эволюции Вселенной.

В первые минуты после Большого взрыва не было ни атомов, ни атомных ядер. Горячая плазма состояла из протонов, нейтронов и электронов, заполняющих всё пространство. Высокая температура препятствовала соединению нейтронов в более тяжёлые ядра. Когда Вселенная немного остыла, протоны и нейтроны начали образовывать так называемые первичные элементы.[62] Но если не брать в расчёт ничтожное количество тяжёлых ядер, основную массу составили два простейших химических элемента: водород и гелий.

Кроме того, как обнаружили ещё средневековые алхимики, не так-то просто превращать один элемент в другой. Так откуда же тогда взялись углерод, кислород, азот, кремний, сера, железо и другие знакомые нам химические элементы? В очень горячей ядерной печи в недрах звезды можно делать то, чего не удалось добиться ни одному алхимику, – превращать одни химические элементы в другие. Процесс приготовления новых элементов называется ядерным синтезом. Именно такой процесс служит источником энергии для термоядерного оружия. Синтез приводит к соединению ядер водорода и нейтронов во всех возможных комбинациях и перестановках. Результатом этих ядерных реакций стали знакомые нам химические элементы.

1 ... 49 50 51 52 53 54 55 56 57 ... 117
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?