Достучаться до небес. Научный взгляд на устройство Вселенной - Лиза Рэндалл
Шрифт:
Интервал:
К счастью, однако, классический расчет черных дыр — тот, что опирается исключительно на теорию гравитации Эйнштейна — не последнее слово в науке. На счету Стивена Хокинга много достижений, но одно из прославивших его открытий заключается в том, что квантовая механика дает веществу, попавшему в ловушку черной дыры, надежду на избавление. Квантовая механика допускает дегенерацию и гибель черных дыр.
Поверхность черной дыры горяча, причем ее температура зависит от массы дыры. И черные дыры излучают, как горячие угольки, посылая энергию во всех направлениях. При этом дыра продолжает поглощать все, что к ней приближается, но согласно законам квантовой механики частицы испаряются с ее поверхности и уносят энергию прочь, то есть потихоньку отнимают ее у черной дыры. Благодаря этому процессу даже крупная черная дыра может со временем излучить всю свою энергию и исчезнуть.
Энергии БАКа в лучшем случае еле–еле хватит для возникновения черной дыры, так что образоваться там смогут (если вообще смогут!) только очень маленькие черные дыры. Небольшая по размеру и чрезвычайно горячая черная дыра — а в БАКе могут возникнуть именно такие объекты — скорее всего, исчезнет мгновенно. Дегенерация, вызванная излучением Хокинга, эффективно и полностью истощит ее. Поэтому, даже если черные дыры действительно возникнут в БАКе, они просуществуют слишком мало, чтобы нанести какой бы то ни было вред. Большие черные дыры испаряются медленно, но крохотные черные дыры теряют всю свою энергию почти мгновенно. В этом отношении, кстати говоря, они ведут себя достаточно странно. Большинство объектов — угольки, к примеру— остывают по мере излучения. Черные дыры, наоборот, нагреваются, и самые высокие температуры имеют самые маленькие дыры, поэтому и излучают они эффективнее других.
Я принадлежу к племени ученых, поэтому все в моем рассказе должно быть безупречно. Технически в приведенном мною доводе, основанном на излучении Хокинга и дегенерации черных дыр, существует лазейка. Мы до конца понимаем устройство только достаточно больших черных дыр — в этом случае нам известны в точности все уравнения, описывающие их гравитационную систему. Хорошо известные и проверенные законы тяготения обеспечивают черным дырам надежное математическое описание. Однако у нас нет настолько же достоверной информации о том, что представляют собой очень маленькие черные дыры. В этом случае в игру уже вступает квантовая механика — не только при описании испарения черных дыр, но и при описании самой природы этих объектов.
Никто не знает наверняка, как решать уравнения, в которых и квантовая механика, и гравитация играют существенную роль. Пока лучшая попытка физиков сделать это — теория струн, но мы до конца не понимаем все ее следствия. Это означает, что в этой картине мира могут еще выявиться белые пятна. Крохотные дыры вряд ли будут вести себя точно так же, как большие черные дыры, свойства которых мы выводим при помощи классической теории гравитации. Может быть, маленькие черные дыры исчезают не с той скоростью, с какой мы ожидаем.
Но даже это — не слишком серьезная прореха в нашей картине. Понятно, что опасность могут представлять только те дыры, которые способны расти. Те же, которые не в состоянии поглотить достаточно вещества, проблем создать не смогут. Единственный потенциальный риск — ситуация, в которой крохотные черные дыры, прежде чем испариться, смогут вырасти до опасных размеров. Но, даже не зная в точности, что представляют собой квантовые черные дыры, мы можем оценить время их жизни. Оно настолько меньше того, которое требуется черной дыре, чтобы стать опасной, что даже обсуждать всерьез это нельзя. Поведение маленьких черных дыр не должно сильно отличаться от поведения знакомых нам нестабильных тяжелых частиц. Точно так же, как эти частицы, маленькие черные дыры должны очень быстро распадаться.
Однако некоторых по–прежнему беспокоило, что вывод Хокинга, хоть и не противоречит ни одному из известных законов природы, все же может оказаться неверным, а черные дыры—полностью стабильными. В конце концов, излучение Хокинга никто никогда не видел, поскольку известные черные дыры излучают слишком слабо и их излучение невозможно зарегистрировать имеющимися у нас средствами. Физики весьма скептически — и справедливо — относятся к этим возражениям, потому что в противном случае им пришлось бы отказаться не только от излучения Хокинга, но и от множества других доказанных аспектов физических теорий. Более того, рассуждения, на основании которых сделан вывод об излучении Хокинга, предсказывают и другие явления, которые ученым уже приходилось наблюдать, и это дает нам дополнительную уверенность в их обоснованности.
Тем не менее излучение Хокинга никто пока не видел. Поэтому, чтобы стопроцентно застраховаться от ошибок, физики задали себе вопрос: если излучения Хокинга не существует и черные дыры, которые, возможно, возникнут в БАКе, окажутся стабильными, то будут ли они представлять опасность?
К счастью, относительно безопасности черных дыр существует весьма сильное доказательство. Причем рассуждения здесь никак не связаны с вопросом о том, испаряются ли черные дыры; кроме того, эти рассуждения не теоретические, а напротив, основаны исключительно на наблюдениях. В июне 2008 г. два физика, Стив Гиддингс и Микеланджело Мангано, а вслед за ними и Группа оценки безопасности БАКа опубликовали на основании эмпирических данных подробные статьи, в которых убедительно исключили любые катастрофические сценарии, связанные с черными дырами[34]. Гиддингс и Мангано рассчитали частоту, с которой во Вселенной могли бы рождаться черные дыры, и влияние, которое они должны были бы оказать на окружающий нас мир, если бы были стабильными. Авторы заметили, что хотя здесь, на Земле, мы пока не умеем получать энергии, необходимые для возникновения чёрных дыр, в космосе такие энергии наблюдаются довольно часто. Существуют космические лучи — высокоэнергетические частицы, — которые довольно часто сталкиваются с другими объектами. Мы не имеем возможности подробно изучить результаты этих встреч, как изучаем результаты экспериментальных столкновений, но можно с уверенностью сказать, что многие из них происходят с энергией по крайней мере не меньшей, чем в БАКе.
Таким образом, если теории, связанные с дополнительными измерениями, верны, то черные дыры могут возникать внутри любых астрономических объектов — даже Земли или Солнца. Гиддингс и Мангано рассчитали, что в некоторых системах (частота образования черных дыр зависит от числа дополнительных измерений) черные дыры увеличиваются слишком медленно и не представляют опасности: даже через миллиарды лет развития черные дыры в большинстве своем остаются крохотными. В других моделях черные дыры могут поглотить достаточно вещества и стать крупными, но обычно они несут на себе электрический заряд. Если бы они и в самом деле представляли опасность, то, зародившись внутри Земли или Солнца, оказались бы в ловушке, и оба названных объекта давно исчезли бы. А раз Земля и Солнце вроде бы остаются на месте, то получается, что заряженные черные дыры — даже те, что стремительно поглощают вещество — не могут представлять опасности.
Таким образом, единственным потенциально опасным сценарием остается тот, в котором черные дыры не несут заряда, но могут расти достаточно быстро, чтобы представлять угрозу. В этом случае гравитационное притяжение Земли — единственная сила, способная замедлить их экспансию — оказалось бы недостаточно сильным и не смогло бы их остановить. Такие черные дыры могли бы пройти Землю насквозь, и мы уже не можем ссылаться на существование Земли, делая выводы об их потенциальной опасности. Однако Гиддингс и Мангано исключили и эту возможность, потому что другие, гораздо более плотные астрономические объекты — а именно нейтронные звезды и белые карлики — обладают достаточным гравитационным притяжением, чтобы захватить и остановить черные дыры.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!