Геном - Мэтт Ридли
Шрифт:
Интервал:
С другой стороны, нет сомнений в том, что все типажи характера, такие как флегматик или холерик, являются врожденными. В связи с тем что нейромедиаторы работают неодинаково, люди по-разному реагируют на одни и те же социальные события. Известны гены, мутации в которых влияют на скорость синтеза серотонина, на чувствительность рецепторов серотонина, на различия в чувствительности к серотонину у нейронов в разных областях головного мозга. Депрессия зимой может наступать из-за того, что у человека слишком чувствительна система регуляции синтеза мелатонина, и это сразу же сказывается на содержании серотонина в мозгу. Таких примеров прямого и побочного влияния можно привести еще очень много. Известна одна датская семья, в которой мужчины в трех поколениях были преступниками. Вы уже, конечно, догадались, что тут же был выделен зловредный ген. У всех членов семьи была обнаружена мутация на хромосоме X. Измененный ген отвечает за синтез моноаминоксидазы A. Моноаминоксидаза участвует в метаболизме серотонина, разделяя его на составляющие компоненты. Не исключено, что изменение данного белка вело членов этой семьи на путь преступлений, хотя объявление гена моноаминоксидазы геном «преступлений», наверное, будет слишком примитивным. Мутации в этом гене происходят крайне редко и не обнаружены у других осужденных за преступления, поэтому пока сложно сказать, какую роль измененная моноаминоксидаза играет в становлении характера.
Данный факт еще раз показывает, какое место в развитии нашей индивидуальности занимают врожденные изменения в биохимии мозга. Но влияние серотонина на поведение уравновешивается влиянием социума и событий окружающего мира на содержание серотонина в мозгу. Некоторые люди более чувствительны к тому, что происходит вокруг них, чем другие. Такова сложная природа отношений между генами и людьми, где все элементы системы оказывают равное влияние друг на друга. Нет и не может быть детерминизма ни со стороны генов, ни со стороны социума. В ходе эволюции гены развивались таким образом, чтобы не только управлять поведением, но и быть чувствительными к сигналам из внешней среды.
Многое в нашей жизни является аналогом того, что уже есть в природе. Летучие мыши используют сонары, сердце работает, как насос, глаз аналогичен фотокамере, естественный отбор соответствует методу проб и ошибок, ген — это рецепт приготовления белка, мозг состоит из проводников (аксонов) и переключателей (синапсов), гуморальная система работает по принципу обратной связи, иммунная система действует, как контрразведка, а развитие организма напоминает развитие экономики страны. Есть еще множество примеров удивительного сходства и совпадений. Хотя некоторые аналогии довольно схематичны, они помогают нам легче понять приемы и технологии, с помощью которых мать Природа решает свои многочисленные проблемы. Многие технические решения мы нашли самостоятельно, и лишь после этого стало понятно, как работает природа.
Но сейчас нам придется покинуть область простых и привычных аналогий и направиться в неизведанные земли. Одно из самых замечательных, прекрасных и загадочных явлений природы, которое происходит без видимых усилий, и чему совершенно нет аналогий в техническом мире человека, — это развитие организма из микроскопического комочка живой материи — оплодотворенной яйцеклетки. Попробуйте представить себе компьютер, или хотя бы компьютерную программу, способную на такое превращение. Даже если Пентагон сконцентрирует все свои финансы и соберет тысячи лучших умов в пустыне Нью-Мексико, вряд ли им удастся изобрести бомбу, которая самостоятельно собиралась бы из груды металла и кучи взрывчатки, хотя кролики в этой же пустыне каждый день успешно справляются с подобной задачей.
Никакие другие аналогии не позволяют нам понять, как природе удалось совершить этот подвиг. Где находится тот прораб, который руководит развитием яйцеклетки, и где хранится план развития? Если отложить пока версию о Деснице Господней, то становится очевидным, что план находится внутри яйцеклетки. Кажется непостижимым, что сложно организованный организм может получиться из неорганизованной протоплазмы. Не удивительно, что несколько столетий назад большой популярностью пользовались теории преформации. Благодаря богатому воображению исследователям удавалось увидеть внутри сперматозоида маленького гомункулуса. Теория преформаций, как отметил еще Аристотель, просто отодвигает проблему вглубь, поскольку не объясняет, каким образом в сперматозоиде смог появиться сложно организованный гомункулус. Более поздние теории были не лучше, хотя наш старый знакомый, Уильям Бэтсон, неожиданно близко подошел к ответу. Он предположил, что развитием организма управляет упорядоченная серия частиц или сегментов внутри яйцеклетки. Для процесса развития он предложил термин гомеозис. В 70-х годах прошлого столетия за дело взялись математики и предложили многочисленные формулы, теорию стоячей волны и прочие сложности. Математики ошибались. Природа нашла гораздо более простое решение, хотя точность и высокая надежность процесса развития организма поражает воображение. И тут не обошлось без генов — именно они выступают в роли прорабов и хранителей плана, записанного в цифровом формате. Большая группа генов, управляющих развитием, лежит посередине хромосомы 12. Обнаружение этих генов и открытие принципа их работы — это, пожалуй, один из наиболее крупных интеллектуальных призов, завоеванных современной генетикой, после того как был взломан код ДНК[119].
Яйцеклетка кажется неорганизованным сгустком протоплазмы. Но вот происходит серия делений клетки, и возникают две оси симметрии, проходящие от передней части эмбриона к задней и от спины к животу. У дрозофил и лягушек инструкции эмбриону идут от материнских клеток, которые указывают, где у эмбриона должна быть голова, а где зад. У мышей и у человека асимметричность в развитии возникает позже, и никто точно не знает каким образом. Вероятно, критическим моментом является прикрепление сгустка клеток к стенке матки.
У дрозофил и лягушек асимметричное развитие происходит под управлением градиентов различных веществ, синтезируемых материнскими клетками. Нет сомнений, что у млекопитающих развитие эмбриона также контролируется химическими градиентами. Каждая клетка эмбриона анализирует химический состав жидкости вокруг себя, посылает информацию в свой навигационный мини-компьютер и получает ответ: «я нахожусь в нижней части организма ближе к животу». Всегда полезно знать, где ты находишься.
Но знание местоположения — это только начало. Другой вопрос, что следует делать в той точке организма, где клетка обнаружила свое присутствие. За это отвечает ряд гомеозисных генов. По сигналам из внешней среды эти гены включают программу развития исходной клетки в клетку крыла или почки. Безусловно, внутри клетки нет никаких планов и инструкций, просто включение рецептором одного гена влечет за собой серию включений других генов, а те запускают следующие гены и так далее шаг за шагом. Человеку проще понять развитие по плану или инструкциям, чем представить себе длинный и сложный путь от яйцеклетки к организму как децентрализованный самоуправляемый процесс, которым он и является. Поскольку каждая клетка организма содержит в себе весь геном, нет необходимости ждать команд от кого-либо еще. В каждой клетке достаточно информации для самостоятельного развития. Важно только правильно определить свои координаты в организме. Нам трудно представить такой путь самоорганизации, поскольку мы привыкли, что в нашем обществе все решения принимает правительство. Может, это нам стоит попробовать жить по-иному[120].
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!