Сознание и мозг. Как мозг кодирует мысли - Станислас Деан
Шрифт:
Интервал:
Следует заметить, что не все области мозга связаны между собой одинаково плотно. Сенсорные области, например зрительная область V1, как правило, отличаются избирательностью и устанавливают малое количество связей, выбирая для этого в основном соседние клетки. Ранние зрительные области поддерживают жесткую иерархию: область V1 сообщается в основном с областью V2, та, в свою очередь, передает данные в области V3 и V4 и так далее. В результате первичные зрительные операции функционально закапсулированы: зрительные нейроны изначально получают лишь небольшую долю тех данных, что поступили на сетчатку, и обрабатывают их в относительном уединении, ничего «не зная» об общей картине.
В высших ассоциативных зонах коры головного мозга связи, впрочем, перестают быть локальными и точечными и объединяют уже не только ближайших соседей. Когнитивные операции перестают быть модульными. В префронтальной коре — передней части головного мозга — преобладают нейроны с длинными аксонами, передающими информацию на большие расстояния. Этот участок связан со множеством других областей нижней теменной доли, средней и задней височной долей, а также фронтальной и задней частей поясной извилины, расположенных на срединной линии мозга. Выяснилось, что эти области играют роль основных узлов коммуникаций мозга, являются его главными центрами связи15. Между собой они соединяются каналами, передающими информацию в обоих направлениях: если область А передает данные в область В, то область В почти наверняка передаст те же данные обратно в область А (рис. 25). Кроме того, длинные связи нередко образуют треугольник: если область А передает данные в области С и В, то С и В, в свою очередь, почти наверняка будут поддерживать связь друг с другом16.
Эти области коры имеют сильную связь с другими участниками процесса — например, центральными латеральными и внутрислойными ядрами таламуса (отвечающими за внимание, активное внимание и синхронизацию), базальными ганглиями (принятие решений и действие) и гиппокампом (запоминание эпизодов из жизни и дальнейшее извлечение их из памяти). Особенно важны каналы, связывающие кору мозга со зрительным бугром, таламусом. Зрительный бугор представляет собой совокупность ядер, каждое из которых связано небольшой петлей как минимум с одним, а нередко и с несколькими областями коры. Практически все связанные напрямую участки коры передают информацию и по параллельным каналам, через глубинные структуры зрительного бугра17. Информация, передаваемая зрительным бугром в кору, важна еще и тем, что сигналы возбуждают кору головного мозга и поддерживают ее в постоянном активном состоянии18. Как мы еще увидим, снижение активности зрительного бугра и каналов связи с ним является одним из важнейших условий наступления комы и вегетативных состояний, в которых мозг оказывается лишен разума.
Таким образом, в основе рабочего пространства лежит плотная сеть взаимосвязанных областей мозга — децентрализованная структура, не имеющая единого физического центра. Находящийся на вершине иерархии «совет директоров», элита из элит, распределенная по самым разным уголкам мозга, синхронно реагирует на происходящее и постоянно обменивается бесчисленными сообщениями. Что поразительно: эта сеть связанных между собой высокоуровневых зон, в первую очередь относящихся к префронтальной и теменной долям, совпадает с сетью, которую я описал в главе 4, упомянув, что ее резкая активация является первым автографом сознательной работы мозга. Теперь мы можем разобраться в том, почему эти ассоциативные зоны систематически возбуждаются всякий раз, когда в фокус нашего внимания попадает фрагмент информации: эти области обладают как раз такими далеко идущими связями, которые необходимы, чтобы передавать сообщения в мозгу на большие расстояния.
Входящие в эту далеко распространившуюся сеть коры пирамидальные нейроны хорошо приспособлены к выполнению своей задачи (рис. 26). Их клеточные тела выросли, чтобы вместить всю сложную молекулярную машинерию, необходимую для поддержания жизнедеятельности длинных аксонов. Вспомним, что в ядре клетки хранится ДНК с генетической информацией, однако считываемые рецепторные молекулы должны каким-то образом добираться до синапсов, которые могут отстоять от клетки на несколько сантиметров. Крупные нервные клетки, способные обеспечить исполнение этой непростой задачи, расположились во втором и третьем слоях коры головного мозга, отвечающих, в частности, за межполушарные каналы связи, переносящие информацию из одного полушария в другое и обратно.
Еще в 20-е годы XX века австрийский исследователь-нейроанатом Константин фон Экономо заметил, что области эти распределены в мозгу неравномерно. Значительно толще они становятся в префронтальной и поясной коре, а также в ассоциативных областях теменной и височной долей, то есть на участках, которые имеют массу внутренних связей и активируются в ходе сознательного восприятия и обработки данных.
Позже Гай Элстон из Квинсленда и Хавьер ДеФелипе из Испании отметили необычайную величину дендритов, то есть принимающих антенн этих гигантских нейронов рабочего пространства. За счет величины дендритов нейроны особенно успешно принимали информацию, поступающую из множества отдаленных областей мозга19. С помощью дендритов (от греческого слова «дерево»), то есть ветвящихся структур — приемников сигнала, пирамидальные нейроны получают информацию от других нейронов. Там, где у подающих сигналы нейронов развивается синапс, у принимающего нейрона появляется микроскопическое образование, называемое отростком и представляющее собой грибообразный вырост. Отростки плотно покрывают ветвящийся древовидный дендрит. Элстон и ДеФелипе продемонстрировали важнейший для гипотезы рабочего пространства факт: оказывается, в префронтальной коре дендриты значительно крупнее, а отростки — гораздо многочисленнее, чем в задних отделах мозга (рис. 26).
Рисунок 26. Крупные пирамидальные нейроны приспособились к трансляции осознанной информации на большие расстояния, особенно в префронтальной коре. Кора головного мозга имеет слоистую структуру, и в слоях II и III располагаются крупные пирамидальные нейроны с длинными аксонами, необходимыми для передачи информации в отдаленные регионы. В префронтальной коре эти слои оказываются значительно толще, нежели в сенсорных областях (сверху). Большая толщина слоев II и III характерна примерно для тех же областей, которые проявляют максимальную активность во время сознательного восприятия. Кроме того, эти же нейроны приспособились к восприятию поступающих с большого расстояния сообщений. Древовидные дендриты (внизу), получающие сообщения из других областей, в префронтальной коре становятся значительно крупнее, нежели во всех прочих областях. Все перечисленные средства адаптации к обмену информацией на большом расстоянии выражены в человеческом мозгу сильнее, нежели в мозгу других приматов.
В человеческом мозгу эти механизмы адаптации к протяженным коммуникациям заметны особенно хорошо20. Наши префронтальные нейроны ветвятся сильнее и содержат больше отростков, чем нейроны наших родственников-приматов. У них дендритные джунгли находятся под контролем семейства генов, которые мутировали особым образом только у человека21. В этот перечень входит FoxP2 — известнейший ген, две мутации которого произошли только в ветви Homo22. Этот ген управляет нашими речевыми структурами23, а сбой в нем ведет к обширному поражению механизмов артикуляции и речи24. В семейство FoxP2 входят несколько генов, отвечающих за формирование нейронов, дендритов, аксонов и синапсов. Воспользовавшись всем богатством возможностей, которые дарует генная инженерия, ученые вырастили мышь с двумя человеческими мутациями FoxP2 — пирамидальные нейроны у этой мыши заветвились нетипичными, по-человечески крупными дендритами, а сама мышь стала проявлять недюжинные способности к учению (правда, все же не заговорила)25.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!