Среднего более не дано. Как выйти из эпохи великой стагнации - Тайлер Коуэн
Шрифт:
Интервал:
В своем подходе к работе с этими данными указанные компании избегают структурных теоретических моделей. Ими предпринимаются попытки соответствующего кодирования и организации данных, однако они избегают начинать эту работу с «модели Джонса, объясняющей, почему люди пользуются поисковиком Google», или «модели Брауна, позволяющей выявить, какие книги покупают на Amazon». Компании эти берутся сразу за цифры и пытаются выявить благоприятные возможности, где только можно.
Экономика в качестве области исследований в последнее время идет тем же путем, что и интернет-компании: множество данных и относительно слабая структура теоретического характера. Мощное «перемалывание» данных и тщательный сбор информации отодвигают теоретическую составляющую на второй план. Совсем от теоретических моделей мы еще не отказались, поскольку мы придаем ряду из них огромное значение, например модели, согласно которой повышение цены при неизменности прочих критериев ведет к снижению потребления соответствующего товара или услуги. Однако это — далеко не новые теории, реальные же действия и добавочная стоимость проистекают из данных и их обработки, включая данные полевых исследований, лабораторных экспериментов и опытов с произвольным распределением объектов по контрольным группам. Используемые модели совершенствуются в недостаточной степени, а их сложность зачастую отпугивает многих ученых-экономистов.
Я резюмировал бы наблюдаемую картину следующим образом: (а) значительно более качественные данные; (Ь) более высокие стандарты для эмпирических опытов; (с) большое число новых сложных теорий, не находящих соответствующего практического применения. Развитие таких направлений, как математическая экономика, экономический инжиниринг, экономика сложных систем и теория игр продолжается — чего и следовало бы ожидать от многосторонних и специализированных дисциплин, однако свое относительное влияние данные дисциплины утрачивают. Экономика все в меньшей мере напоминает работу Эйнштейна и Евклида и все в большей — исследования пищеварительной системы морских звезд.
Если сегодня и есть экономисты, работы которых имеют значительное влияние, то это Эстер Дуфло и Абхиджит Банерджи, а также их коллеги из Лаборатории проблем бедности Массачусетского технологического института. Однажды мне довелось посетить один из их исследовательских проектов в Хайдарабаде, Индия. Исследованием были охвачены десятки тысяч человек, одни из которых имели возможность воспользоваться услугами микрокредитования, а другие — нет. В исследуемые группы вошли жители сопоставимых районов, задача же проекта заключалась в определении положительного эффекта микрокредитования или же отсутствия такового. Десятки добровольцев проекта помогали в сборе информации о заемщиках до и во время их участия (или неучастия) в программе микрокредитования. Эта информация включала данные о доходе, новой работе или начале предпринимательской деятельности, невозможности погасить кредит и прочих аспектах повседневной жизни экономического характера. Основной вопрос, на который требовалось найти ответ, был предельно простым: изменилась ли к лучшему жизнь тех, кто воспользовался микрокредитами? Выяснилось, что представители данной категории чаще начинали собственную предпринимательскую деятельность, что и позволило авторам проекта написать свой ставший классическим труд. Некоторые специалисты рассматривают данный проект наряду со схожим экспериментом, проведенным в Йельском университете под руководством Дина Карлана, в качестве самого значимого исследования проблемы микрокредитования. Данные проекты не имеют ничего общего с проектами, где у государственного агентства запрашиваются открытые данные и проводится регрессионный анализ без особого внимания к качеству или значению представленных цифр. Организация и проведение полноценного эксперимента в полевых условиях возможны исключительно человеком и не могут быть выполнены умными машинами.
Используемые вне экономической науки компьютерные программы способны анализировать огромные объемы числовых данных и выявлять закономерности гораздо более совершенным образом, чем это в состоянии сделать сегодняшние эмпирические исследователи. Способны они и представлять результаты своей работы. Программа способна, к примеру, обработать информацию по множеству пользователей социальных сетей и выявить влияние пола, возраста и места жительства на музыкальные предпочтения. Данные программы будут в состоянии подтвердить наличие связей, в существовании которых мы уже убеждены, выявить связи, которые нам пока не видны и, может быть, предложить гипотезы, о которых мы не подозреваем. Экономическая наука к этому пока не пришла, но, возможно, в ближайшие пятьдесят лет подобные решения заменят собой зависимость нынешних экономистов от теоретических моделей. Мощность и качество данных, скорее всего, будут расти быстрее мощности и качества наших самых передовых моделей.
Нынешняя система построения моделей в социальных науках аналогична «логике гроссмейстеров в эпоху, предшествующую появлению компьютера Deep Blue». Построение моделей являлось и по-прежнему остается крайне удобным подходом, поскольку социальные науки еще только ждут появления своего аналога Deep Blue.
С началом использования машинного разума в экономике мы будем в состоянии усовершенствовать свои представления о некоторых фундаментальных закономерностях, свойственных экономическим феноменам. Благодаря машинному анализу мы сможем лучше понять причины финансовых кризисов, выявить факторы, свидетельствующие об избыточной доходности акций, или культурные предпосылки экономического развития. Нам будет комфортно осознавать, что знания, которыми мы уже владели, были подтверждены, за исключением незначительных поправок, машинным разумом. В более долгосрочной перспективе, по мере совершенствования качества данных и роста числа используемых параметров, машинный разум будет в состоянии указать нам, какое сочетание нормативно-правового режима и монетарной политики приведет нас к финансовому кризису (с определенной долей точности, конечно), а мы даже не сможем понять, на чем подобные выводы основаны. Мы будем пытаться разобраться в логике машины, но объемы данных и сложность моделей окажутся за пределами нашего понимания. Мы будем знать, каким образом представлять данные, требующиеся для машинного анализа, как проверять результаты анализа одних машин с помощью других и каким образом данные результаты использовать. Однако настанет момент, когда мы перестанем понимать все составляющие науки, как перестанем понимать и то, каким образом прогнозы сочетаются друг с другом. Лишь машина сможет — на свой собственный манер — владеть полнотой теории и результатов ее проверки.
В конце концов машины окажутся в состоянии посягнуть на все или большинство функций, выполняемых экономистом. Социолог же будущего более не будет представлять собой независимого специалиста, формулирующего теории, проверяющего их относительно имеющихся данных и публикующего полученные результаты. Социолог будущего будет все в большей мере опираться на мощь компьютера и дополнять своей работой деятельность компьютерных программ. Некое подобие публикаций, возможно, и будет существовать, однако главенствующий внешний формат исследовательской информации будет представлен в стандартизированном, удобном для работы машин виде. Вместо «чтения статей» мы будем обращаться к машинам за результатами их метаисследований, суммирующими последние достижения их работы, подобно тому, как сегодня можно запросить анализ шахматной позиции у программы Rybka. То, что раньше было отдельной журнальной статьей, станет информационными данными для программ. «Специалистами» будут считаться специально подготовленные работники, способные разобраться в выводах программы или перевести данные в пригодный для ввода в компьютер формат, а не лица, собственно и выполняющие аналитическую работу.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!