📚 Hub Books: Онлайн-чтение книгДомашняяПоследнее изобретение человечества. Искусственный интеллект и конец эры Homo sapiens - Джеймс Баррат

Последнее изобретение человечества. Искусственный интеллект и конец эры Homo sapiens - Джеймс Баррат

Шрифт:

-
+

Интервал:

-
+
1 ... 53 54 55 56 57 58 59 60 61 ... 71
Перейти на страницу:

«В вычислительной нейробиологии мы задаем вопрос: "Хорошо, что человеческий мозг на самом деле делает?" — говорит Грейнджер. — Не что мы думаем, он делает, и не что мы бы хотели, чтобы он делал. Что он на самом деле делает? И может быть, информация об этом даст нам впервые и определение разума, и определение адаптации, и определение языка».

Выяснение вычислительных принципов мозга начинается с того, что ученые проверяют, чем занимаются в мозгу те или иные кластеры нейронов. Нейроны — это клетки, которые посылают и принимают электрохимические сигналы. Важнейшую часть их составляют аксоны (волокна, соединяющие нейроны между собой; именно они обычно являются отправителями сигнала), синапсы (соединения, через которые проходит сигнал) и дендриты (обычно получатели сигнала). В мозгу человека около ста миллиардов нейронов. Каждый из них соединен со многими десятками тысяч других нейронов. Такое обилие связей делает все операции мозга параллельными, а не последовательными, как у большинства компьютеров. В вычислительных терминах последовательная обработка данных означает, что операции выполняются по очереди, по одной. Параллельная обработка данных означает, что большое количество данных обрабатывается одновременно — иногда в одно и то же время проходят сотни тысяч или даже миллионы операций.

Представьте на мгновение, что вы переходите оживленную городскую улицу; подумайте, сколько информации — цвета, звуки, запахи, температура, ощущение асфальта под ногами — одновременно поступает при этом в ваш мозг через уши, глаза, нос, конечности и кожу. Если бы ваш мозг не был органом, способным обработать все это одновременно, он мгновенно выключился бы от перегрузки. Вместо этого ваши органы чувств собирают всю эту информацию, мозг пропускает ее через нейроны и обрабатывает, — а в результате вы ведете себя соответственно, останавливаетесь перед светофором и избегаете столкновений с другими пешеходами.

Группы нейронов работают вместе и объединяются в схемы, сильно напоминающие электронные. В электронной схеме протекает электрический ток через специальные элементы, такие как резисторы и диоды. В ходе этого процесса ток выполняет различные функции — включает свет, к примеру, или запускает косилку. Если вы составите список инструкций, которые приводят к выполнению этой функции или какого-то вычисления, вы получите компьютерную программу или алгоритм.

Кластеры нейронов в вашем мозгу образуют схемы, которые действуют как алгоритмы. При этом они не включают свет, а распознают лица, планируют отпуск или набирают на клавиатуре предложение. И все это время работают параллельно. Откуда исследователи знают, что происходит в этих нейронных кластерах? Попросту говоря, они собирают детальную информацию при помощи специальных инструментов визуального исследования мозга, начиная от электродов, вживленных непосредственно в мозг животных, и заканчивая такими аппаратами, как ПЭТ- и фМРТ-сканеры применительно к людям. Нейронные зонды внутри и снаружи черепа способны показать, что делают отдельные нейроны, а маркирование нейронов электрически чувствительными красками наглядно показывает, когда те или иные нейроны активны. Из этих и других методик следуют проверяемые гипотезы об алгоритмах, управляющих контурами мозга. Кроме того, начато определение точной функции некоторых отделов мозга. Уже больше десяти лет, к примеру, нейробиологи знают, что узнавание лиц происходит в части мозга, известной как веретенообразная извилина.

Постойте, но в чем же суть? Неужели вычислительные системы, построенные по образу и подобию мозга (подход вычислительной нейробиологии), работают лучше, чем те, что построены de novo (подход информатики)?

Ну, одна из разновидностей систем, сделанных по образцу мозга, — искусственные нейронные сети (ИНС), — работает уже так давно и хорошо, что стала, по существу, основой ИИ. Как говорилось в главе 7, ИНС (которые можно разделить на аппаратные и программные) были придуманы в 1960-е гг. специально для того, чтобы играть роль нейронов. Одно из основных их преимуществ состоит в том, что ИНС обучаемы. Если вы хотите научить нейронную сеть переводить текст с французского языка на английский, к примеру, вы можете для начала подать на вход французский текст и точный английский перевод этого текста. Этот процесс называется контролируемым обучением. Если образцов будет достаточно, сеть распознает и усвоит правила, связывающие французские слова с их английскими эквивалентами.

В мозгу нейроны соединяются друг с другом через синапсы, и именно в этих точках контакта происходит обучение. Чем прочнее синаптическая связь, тем прочнее воспоминание. В ИНС прочность синаптического соединения называется его «весом» и выражается в виде вероятности. ИНС присваивает си- наптические веса правилам перевода с иностранного языка, которые усваивает в процессе обучения. Чем дольше длится обучение, тем лучше будет перевод. В ходе обучения ИНС учится распознавать собственные ошибки и соответствующим образом корректирует синаптические веса. Это означает, что нейронная сеть изначально способна к самосовершенствованию.

После обучения, когда на вход системы поступит французский текст, ИНС сверится с вероятностными правилами, усвоенными в ходе обучения, и выдаст свой лучший перевод. По существу, ИНС ищет закономерности в структуре данных. На сегодняшний день поиск закономерностей в больших объемах неструктурированных данных — одна из самых перспективных областей применения ИИ.

Помимо перевода и анализа больших объемов информации ИНС сегодня активно используются в структуре ИИ, анализируют фондовый рынок и распознают объекты на картинках. Они присутствуют в программах оптического распознавания символов, предназначенных для чтения печатного текста, и в микросхемах, управляющих ракетами. ИНС обеспечивают «ум» умным бомбам. Да и большинство архитектур УЧИ без них не обойдутся.

Из главы 7 стоит вспомнить еще кое-что важное об этих вездесущих нейронных сетях. Подобно генетическим алгоритмам, ИНС работают по принципу «черного ящика». Это значит, что входные данные — в нашем примере французский текст — прозрачны. А выходные — здесь это английский текст — понятны. Но что происходит в промежутке, никто не знает. Все, что может сделать программист, — это руководить и направлять обучение ИНС, подбирая примеры и пытаясь улучшить результат перевода. А поскольку результат работы «черного ящика» — искусственного интеллекта — непредсказуем, его нельзя считать по-настоящему безопасным.

Судя по результатам работы алгоритмов Грейнджера, построенных по образу и подобию мозга, можно сделать вывод, что при создании искусственного разума лучше, возможно, следовать эволюционной модели и копировать человеческий мозг, чем создавать de novo когнитивные системы на базе компьютерных наук.

В 2007 г. ученики Грейнджера из Дартмутского колледжа написали по результатам исследований мозга алгоритм визуального восприятия, распознававший объекты в 140 раз быстрее, чем традиционные алгоритмы. Он показал лучшие результаты, чем 80000 других алгоритмов, и выиграл приз IBM в $10 000.

В 2010 г. Грейнджер и его коллега Ашок Чандрашекар создали по образцу мозга алгоритмы контролируемого обучения, которые используются при обучении машин распознаванию оптических символов и голоса, выделению спама и т. п. Алгоритмы, сделанные по образцу мозга для использования в процессорах с параллельной обработкой данных, работали так же точно, как и последовательные алгоритмы того же назначения, но в десять с лишним раз быстрее. Образцом для новых алгоритмов послужили самые распространенные типы нейронных кластеров, или схем, мозга.

1 ... 53 54 55 56 57 58 59 60 61 ... 71
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?