Как не ошибаться. Сила математического мышления - Джордан Элленберг
Шрифт:
Интервал:
Но зачем останавливаться на этом? Если я плачу студенту колледжа за то, чтобы он сделал изображение танцующих ножниц на всех страницах моего сайта, мне нужно знать не только то, сработает ли этот прием вообще, но какие именно результаты он обеспечит. Согласуется ли воздействие, которое я обнаружил, с тем, что в долгосрочной перспективе обновление сайта повысит объем продаж всего на 5 %? При такой гипотезе вы можете обнаружить, что вероятность роста на 10 % гораздо выше, скажем 0,2. Другими словами, доказательство от маловероятного не исключает гипотезу, что обновление сайта приведет к улучшению ситуации на 5 %. Однако вы можете оптимистично задать себе вопрос, не было ли невезение причиной полученного вами результата, и на самом деле обновление сайта повысит привлекательность ваших ножниц на 25 %. Вы вычисляете еще одно р-значение и получаете 0,01 – довольно малую вероятность, которая убеждает вас отбросить эту гипотезу.
Доверительный интервал – это тот диапазон гипотез, которые доказательство от маловероятного не отбрасывают, или гипотез, которые в разумных пределах согласуются с реально наблюдаемым результатом. В данном случае доверительный интервал мог бы составлять от +3 % до +17 %. Тот факт, что 0 %, как следовало бы из нулевой гипотезы, не включается в доверительный интервал, говорит о том, что результаты статистически значимы в том смысле, о котором шла речь выше в данной главе.
Однако доверительный интервал дает гораздо больше информации. Интервал [+3 %, +17 %] позволяет быть уверенным в том, что эффект положительный, но не в том, что он большой. С другой стороны, интервал [+9 %, +11 %] позволяет с гораздо большей уверенностью предположить, что эффект не только положительный, но и довольно большой.
Доверительный интервал содержит полезную информацию и в случаях, когда вы не получаете статистически значимых результатов – другими словами, когда доверительный интервал нулевой. Если доверительный интервал равен [−0,5 %, 0,5 %], тогда тот факт, что вы не получили статистически значимых результатов, становится веским доказательством в пользу того, что вмешательство не имеет никакого эффекта. Если доверительный интервал составляет [−20 %, 20 %], причина отсутствия статистически значимых результатов состоит в том, что вы представления не имеете, оказывает ли вмешательство какое-либо воздействие и в какую сторону. С точки зрения статистической значимости эти два следствия кажутся одинаковыми, но имеют разные последствия в плане того, чего вам следует ожидать дальше.
Разработку концепции доверительного интервала обычно приписывают Ежи Нейману, еще одному выдающемуся ученому раннего периода развития статистики. Нейман был поляком, который, как и Абрахам Вальд, занимался чистой математикой в Восточной Европе, прежде чем перейти в новую по тем временам область математической статистики и переехать на Запад. В конце 1920-х годов Нейман начал сотрудничать с Эгоном Пирсоном, унаследовавшим от своего отца Карла как академическую должность в Лондоне, так и ожесточенную научную вражду с Рональдом Фишером. Фишер был трудным человеком, всегда готовым вступить в спор; его дочь говорила о нем: «Он вырос, не научившись чутко относиться к обычным человеческим качествам собратьев»{132}. В Неймане и Пирсоне он нашел оппонентов, которые оказались достаточно непреклонными, чтобы сражаться с ним десятилетиями.
Научные разногласия между этими учеными нашли свое самое яркое выражение в подходе Неймана и Пирсона к проблеме вывода[145]. Как установить истину по имеющимся данным? Их поразительный ответ состоит в том, чтобы не задавать вопросов. Для Неймана и Пирсона задача статистики – сказать нам, не во что нам верить, а что нам делать. Статистика ориентирована на принятие решений, а не на поиск ответов на вопросы. Проверка статистической значимости – не более чем правило, которое подсказывает ответственным лицам, целесообразно ли одобрять лекарственный препарат, предпринимать предложенную экономическую реформу или делать сайт более интересным.
Поначалу кажется просто диким отрицать тот факт, что цель науки состоит в поисках истины, но философия Неймана и Пирсона не так далека от рассуждений, которые мы используем в других областях. В чем состоит цель судебного разбирательства по уголовному делу? Мы могли бы наивно заявить, что это выяснение, действительно ли подсудимый совершил преступление, по поводу которого начато судебное разбирательство. Однако все далеко не так. Существуют нормы доказательного права, которые запрещают жюри присяжных заслушивать свидетельские показания, полученные с нарушением закона, даже если эти показания могли бы помочь им точно определить, виновен подсудимый или нет. Цель судебного разбирательства – не истина, а справедливость. У нас есть правила, которых необходимо придерживаться, поэтому, когда мы говорим, что подсудимый «виновен», мы имеем в виду (если внимательно относимся к словам) не то, что этот человек совершил преступление, в котором его обвиняют, а то, что он был осужден честно и справедливо в соответствии с данными правилами. Какие бы правила вы ни выбрали, в некоторых случаях вы неизбежно освободите преступников и посадите за решетку невиновных. Чем меньше вы делаете первое, тем больше вероятность того, что совершите второе. Поэтому мы пытаемся создавать правила, в случае которых общество так или иначе считает, что мы лучше всего обеспечиваем этот важнейший компромисс.
В понимании Неймана и Пирсона наука – тот же суд. Когда лекарственный препарат не проходит проверку значимости, мы не используем формулировку: «У нас есть уверенность, что этот препарат не работает», а говорим просто: «Не было доказано, что этот препарат работает». А затем мы отклоняем этот препарат, точно так же как прекращаем дело в отношении подсудимого, присутствие которого на месте преступления невозможно было установить в пределах разумных сомнений, даже если каждый человек в здании суда считает его виновным на все сто процентов.
Фишеру все это было не нужно: в его понимании Нейман и Пирсон погрязли в чистой математике, настаивая на строгом рационализме в ущерб всему, что напоминает научную практику. Большинство судей не пошли бы на то, чтобы позволить невиновному подсудимому встретиться с палачом, даже если того требуют существующие правила. А большинство практикующих ученых, вообще не заинтересованных в следовании строгой совокупности инструкций, отказывают себе в удовольствии выработать мнение по поводу того, какие гипотезы действительно являются истинными. В письме Уильяму Эдмунду Хику Фишер писал:
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!