📚 Hub Books: Онлайн-чтение книгДомашняяСтатистика и котики - Владимир Савельев

Статистика и котики - Владимир Савельев

Шрифт:

-
+

Интервал:

-
+
1 2 3 4 5 6 7 8 9 10 ... 21
Перейти на страницу:

Дисперсионный анализ хорош тем, что позволяет сравнивать между собой любое количество групп (две, три, четыре и т. д.) Его нулевая гипотеза состоит в том, что животные абсолютно не различаются между собой по размеру. Альтернативная гипотеза — хотя бы один вид значимо отличается от остальных.

Статистика и котики

Теперь посмотрим, как это работает.

Во-первых, давайте объединим котиков, песиков и слоников вместе и отметим их общее разнообразие. Мы можем заметить, что размеры их типичных представителей могут существенно различаться. Например, средний слоник намного больше среднего котика.

Статистика и котики

Теперь предположим, что мы убрали отсюда всех слоников. Как вы можете заметить, разнообразие размеров сильно уменьшилось, поскольку слоники вносили в него существенный вклад. И чем сильнее типичные слоники отличались от остальных, тем больше был этот вклад.

Статистика и котики

Однако отметим, что котики, песики и слоники по отдельности также бывают весьма различными в зависимости от возраста, генов и режима питания. Теоретически мы можем встретить как очень большого котика, так и весьма маленького слоника.

Статистика и котики

Таким образом, разнообразие размеров складывается как из принадлежности животного к тому или иному виду, так и из абсолютно «левых» факторов. И наша задача — сравнить между собой их вклады.

Как мы помним, одной из основных мер, определяющих разнообразие, является дисперсия. И дисперсионный анализ работает именно с ней. Он выделяет ту часть дисперсии, которая обусловлена фактором вида (межгрупповую дисперсию), и ту, которая определяется прочими факторами (внутригрупповую дисперсию), а затем сравнивает их по F-критерию Фишера, с которым мы встречались раньше. И чем больше будет значение этого критерия, тем сильнее фактор вида влияет на размер животных.

Статистика и котики

К большому сожалению, дисперсионный анализ является параметрическим методом, а следовательно, не очень любит выбросы и ненормальные распределения данных. Если у вас такая ситуация, то рекомендуется воспользоваться его непараметрическим кузеном — H-критерием Краскела-Уоллеса. Последний очень похож на критерий Манна-Уитни, который мы рассматривали в одном из предыдущих разделов.

Мы точно так же объединяем всех животных в одну группу, упорядочиваем их от самого большого до самого маленького и присваиваем им ранги.

Статистика и котики

Затем они снова делятся на группы, ранги внутри групп складываются, и их суммы сравниваются между собой. Логика здесь такая: чем сильнее различаются суммы рангов, тем больше вероятность отвергнуть нулевую гипотезу. И коэффициент Краскела-Уоллеса как раз и отражает различия в этих суммах.

Статистика и котики

В заключение напомним, что после вычисления любого из этих критериев необходимо найти соответствующий им p-уровень значимости. Именно он и покажет, существует ли связь между размерами и биологическим видом.

НЕМАЛОВАЖНО ЗНАТЬ!

Проблема множественных сравнений

К большому сожалению, если мы получили значимые результаты по дисперсионному анализу, мы не сможем по ним сказать, кто от кого отличается по размеру: слоники от котиков или песики от слоников. Мало того — мы не можем просто взять и сравнить их попарно с помощью t-критерия Стьюдента. Истоки этого — в основах теории вероятности, и мы не будем на них подробно останавливаться. Просто отметим, что с каждым таким сравнением вы серьезно увеличиваете свои шансы ошибиться в выводах. Эта неприятная вещь называется проблемой множественных сравнений.

Поэтому такие сравнения необходимо проводить с помощью других, так называемых апостериорных критериев (или критериев post hoc).

Простейший из них называется t-критерием Стьюдента с поправкой Бонферрони. Вычисляется он как самый обычный t Стьюдента. Поправка же касается критического значения, с которым мы сравниваем p-уровень значимости (0,05). Это значение нужно поделить на количество попарных сравнений.

Статистика и котики

Если вы сравниваете три вида животных, то таких сравнений тоже будет три (котики с песиками, песики со слониками и слоники с котиками). А вот если их четыре, то количество сравнений увеличивается до шести. И тогда критическое значение будет равно 0,05 / 6.

Применив поправку Бонферрони, посмотрите на ваш p-уровень значимости. Если он ниже получившегося значения, то песики и котики различаются, если же нет, то нет.

Статистика и котики

Помимо t-критерия Стьюдента с поправкой Бонферрони существует еще, по крайней мере, 17 апостериорных критериев, которые применяются в различных ситуациях. В первом приближении мы можем разбить их на две группы. В первую входят те критерии, которые применяются, если дисперсии котиков, песиков и слоников не отличаются друг от друга, а вот вторая группа содержит критерии для случая неравных дисперсий. Самые популярные из них представлены ниже.

Статистика и котики
Глава 6. Диета для котиков или многофакторный дисперсионный анализ

Из предыдущей главы мы узнали, как определить взаимосвязь между биологическим видом животного и его размером с помощью дисперсионного анализа. Однако, помимо вида, на размер могут повлиять и другие факторы, например, питание.

При этом на котиков, песиков и слоников оно может влиять по-разному. Так, мясная диета будет очень нравиться котикам и песикам, в то время как слоники от нее загрустят и будут голодать.

1 2 3 4 5 6 7 8 9 10 ... 21
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?