📚 Hub Books: Онлайн-чтение книгДомашняяВселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист

Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности - Джефф Бломквист

Шрифт:

-
+

Интервал:

-
+
1 2 3 4 5 6 7 8 9 10 ... 66
Перейти на страницу:

Известен простейший эксперимент, который впервые провели в американской Bell Laboratories Клинтон Дэвиссон и Лестер Джермер и результаты которого были опубликованы в 1927 году. Он доказывает, что интуитивная картина мира Ньютона неверна. Хотя яблоки, планеты и люди действительно ведут себя «по-ньютоновски», перемещаясь с места на место размеренным и предсказуемым образом с течением времени, этот эксперимент показал, что все фундаментальные строительные кирпичики материи действуют совершенно не так.

Работа Дэвиссона и Джермера начинается так: «Интенсивность рассеивания однородного пучка электронов с регулируемой скоростью при прохождении через монокристалл никеля измеряется как функция направления». К счастью, есть способ оценить основное содержание их выводов благодаря упрощенной версии того же эксперимента – так называемому двухщелевому эксперименту. В нем источник испускает электроны в направлении препятствия с двумя маленькими щелями (дырками). С другой стороны препятствия расположен экран, который загорается, когда до него доходит электрон. Каков источник электронов, не так важно, но с практической точки зрения можно представить вытянутый вдоль препятствия провод под напряжением[4]. Мы изобразили двухщелевой эксперимент на рис. 2.2.

Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Рис. 2.2. Электронная пушка выстреливает электронами в сторону двух щелей, и если бы электроны вели себя как «обычные» частицы, то можно было бы ожидать, что на экране появится пара полосок, как показано на рисунке. Удивительно, что этого не происходит

Представьте, как на экран направляется камера, затвор которой оставляется открытым, чтобы обеспечить долгую выдержку для коротких вспышек света, одна за другой возникающих при попадании электронов на экран. Обязательно формируется некая система, и уместно поинтересоваться, что же это за система. Допустим, электроны – это просто частицы, которые ведут себя так же, как яблоки или планеты. Тогда можно ожидать, что система будет выглядеть примерно так, как на рис. 2.2. Некоторые электроны пройдут сквозь щели, большинству это не удастся. Те, которые проникнут в щель, немного оттолкнутся от ее кромки, что вызовет их рассеяние, но большая часть прошедших электронов, разумеется, появится сразу за двумя щелями – следовательно, это и будет самая яркая часть фотографии.

Этого не происходит. Напротив, получается картина, похожая на рис. 2.3. Полученная структура именно такая, как была представлена Дэвиссоном и Джермером в статье 1927 года. В 1937 году Дэвиссон получил Нобелевскую премию за «экспериментальное открытие электронной дифракции на кристаллах». Премию он разделил не с Джермером, а с Джорджем Томсоном, который также наблюдал эту структуру, проводя эксперименты в Абердинском университете. Чередующиеся светлые и темные полосы известны как интерференционная картина, а интерференция чаще связана с волнами. Чтобы понять это, давайте мысленно проведем двухщелевой эксперимент не с электронами, а с волнами воды.

Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Рис. 2.3. В реальности удары электронов по экрану не связаны со щелями. Вместо этого формируется структура из полосок, которая выстраивается постепенно, электрон за электроном

Представьте цистерну с водой, у которой наполовину опущена стенка с вырезанными в ней двумя щелями. Экран и камеру можно заменить детектором высоты волн, а провод под напряжением – чем-то, создающим волны, например, деревянной доской, положенной вдоль цистерны и снабженной мотором, который заставляет ее погружаться в воду и выныривать. Созданные таким образом волны будут двигаться по поверхности воды, пока не достигнут стенки. Когда волна ударится о стенку, большая ее часть откатится, но два небольших фрагмента пройдут сквозь щели. Эти две образовавшиеся волны расходятся от щелей по направлению к детектору высоты волн. Заметьте, мы говорим здесь «расходятся», потому что волны отходят от щелей не по прямой. Щели становятся двумя источниками новых волн, каждая из которых расходится увеличивающимися полукругами. Рис. 2.4 показывает, что же происходит.

Вселенная. Курс выживания среди черных дыр, временных парадоксов, квантовой неопределенности

Рис. 2.4. Вид сверху на волны, возникающие из двух точек в цистерне (в верхней части рисунка). Две расходящиеся кругами волны перекрываются и интерферируют. «Спицы» – это те области, где две волны погасили друг друга, и вода осталась спокойной

Этот рисунок – отличная визуальная демонстрация поведения волн воды. Есть области, где волны не возникают вовсе, и кажется, что они отходят от щелей, как спицы от центра колеса, в то время как другие области покрыты взлетами и падениями волн. Параллели со структурой, которую наблюдали Дэвиссон, Джермер и Томсон, поразительны. Вернувшись к электронам, ударяющим в экран, мы видим, что те области, где обнаруживается мало электронов, соответствуют местам в цистерне, где поверхность воды остается спокойной, то есть тем самым спицам, которые отходят от щелей на рисунке.

Довольно легко объяснить, почему такие спицы появляются в цистерне: дело в смешении и слиянии волн, распространяющихся из щелей. Поскольку волны имеют свои взлеты и падения, то две волны при встрече могут «складываться» или «вычитаться». Если встреча двух волн происходит на взлете одной волны и падении другой, происходит взаимное погашение, и волны в этой точке не будет. В иных случаях волны могут соединяться друг с другом на взлете – в этом случае они образуют более крупную волну. В каждой точке цистерны расстояние между ней и двумя щелями немного разнится, а следовательно, в каких-то местах две волны будут соединяться на своих пиках, в других одна будет на взлете, а другая на спаде, а в большинстве точек соединение будет происходить в каких-то сочетаниях между этими двумя крайними точками. В результате получится чередование – интерференционная картина, или фигура.

При всей наглядности картины понять, что электроны тоже образуют интерференционную фигуру – а это экспериментально наблюдаемый факт, – очень трудно. Согласно Ньютону, а также здравому смыслу, электроны испускаются из источника, направляются по прямым линиям в сторону щелей (поскольку на них не действуют никакие силы – вспомните первый закон Ньютона), проходят сквозь щели с небольшими искривлениями (если цепляют кромку) и продолжают двигаться по прямой вплоть до экрана. Но в таком случае интерференционная фигура не появится – получится пара полосок, как показано на рис. 2.2.

1 2 3 4 5 6 7 8 9 10 ... 66
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?