Апология математики (сборник статей) - Владимир Андреевич Успенский
Шрифт:
Интервал:
Математика окликают с заплутавшего воздушного шара: «Где мы?» – «На воздушном шаре». (В другом, более пространном варианте анекдота после обмена репликами один из воздухоплавателей замечает: «Все ясно. Это математик». «С чего ты взял?» – спрашивает другой. «Он подумал, прежде чем ответить, и ответ дал совершенно точный – и совершенно бессмысленный».)
Пассажиры поезда наблюдают в окно нескончаемые стада белых овец. И вдруг замечают чёрную овцу, повернувшуюся к поезду боком. «О, здесь бывают и чёрные овцы!» – восклицает один. «По меньшей мере одна овца с по меньшей мере одним чёрным боком», – поправляет его другой, математик.
«Сказка ложь, да в ней намёк! Добрым молодцам урок». Эти анекдоты весьма поучительны: они в наглядной и сжатой форме выражают идею о том, что чрезмерная точность может быть вредной, способной мешать адекватному восприятию текста. Здесь есть основа для уважительного диалога между гуманитарием и математиком, диалога, полезного для обеих сторон. В этом диалоге математик обучает гуманитария – нет, не так, не обучает, а делится своими представлениями о том, сколь важна точность, причём не только точность выбора слов, о которой говорил ещё Декарт, процитированный нами в эпиграфе, но и точность построения синтаксических конструкций. Математик в этом диалоге пытается передать гуманитарию свою способность увидеть логический каркас текста. Гуманитарий же делится с математиком своими соображениями о важности неточности; он объясняет математику, что и «плоть» текста, облекающая его логический каркас, и контекст, в котором возникает текст, не менее существенны, чем упомянутый каркас. Окружающий мир, говорит гуманитарий, аморфен и расплывчат, и потому неточные, расплывчатые тексты и образы более приспособлены для адекватного его отражения, нежели тексты и образы математически точные.
V
Ряд положений языкознания может быть изложен с математической точностью. (А скажем, для литературоведения подобный тезис справедлив разве что в применении к стиховедению.) В то же время именно на уроках математики учащиеся могли бы приучаться правильно выражать свои мысли на родном языке. Уроки языка и уроки литературы на родном языке проводятся, как правило, одним и тем же учителем. На наш взгляд, было бы полезнее несколько отделить лингвистику от литературоведения. И уж совсем крамольная идея – объединить, хотя бы в порядке эксперимента, родной язык и математику, с тем чтобы их преподавал один и тот же учитель. Некоторые уважаемые коллеги автора этих строк нашли эту фантастическую идею ужасающей. Поэтому спешу объясниться.
Прежде всего идея эта не столько крамольная, сколько утопическая и относится к некоторому идеальному будущему. Будущее, как известно, подразделяется на обозримое и необозримое. В обозримом будущем объединение уроков языка и уроков математики нереально хотя бы потому, что учителей, способных преподавать оба этих предмета, на сегодняшний день не найдёшь. Если же говорить о будущем необозримом, то можно предполагать, что сама технология обучения в этом будущем кардинально изменится и окажется мало похожей на сегодняшнюю. Так что высказанное предложение обозначает всего лишь вектор движения, и притом движения не реальной организации образования, а мысли. Это как показ образцов высокой моды или футуристических градостроительных проектов, которые хотя и не предполагают массового тиражирования, но служат источником вдохновения для создателей реальной одежды и реальной архитектуры.
Что до движения мысли, то здесь надлежит сказать следующее. Среди многочисленных функций языка можно выделить две: передавать информацию и передавать эмоции. Разумеется, в реальной языковой практике названные функции переплетены. Тем не менее при всей их нераздельности наличествует и некая неслиянность, и можно попытаться разделить их как в обучении языку, так и в его преподавании. Функция передачи эмоций сближает язык с литературой (думается, что, когда говорят о «великом и могучем», имеют в виду именно эту функцию). Действительно, вся стилистика, всевозможные художественные средства языка – в частности, такие локальные, как тропы (метафоры, метонимии, гиперболы и т. п.), – всё это относится столько же к ведомству лингвистики, сколько к ведомству литературоведения. Поэтому названные темы могут изучаться на лингво-литературоведческих уроках. Нас же будет интересовать функция бесстрастной передачи информации; она воплощается в текстах, которые один из основоположников отечественного программирования Андрей Петрович Ершов называл деловой прозой. К деловой прозе относятся, в частности, естественно-научные тексты[10] (и прежде всего математические), юридические тексты, тексты делопроизводства, инструкции. Деловая проза занимает всё большее место в нашей жизни и потому должна быть предметом, которому учат в школах. Преподавать его можно было бы на уроках родного языка или же на специальных занятиях, посвященных чистой, не несущей эмоции информации.
Обучение деловой прозе призвано прививать навыки правильного составления и правильного восприятия деловых текстов, иначе говоря, умение правильно выражать мысль посредством слов и правильно интерпретировать выраженную словами мысль. Это особенно важно для понимания инструкций, ошибочная трактовка которых нередко вызывает проблемы.
Проблема такого рода возникла, например, в 2008 г. на выборах в Российскую академию наук (РАН). Как известно, выборы в РАН трёхступенчатые: сперва кандидатуры соискателей рассматривает секция, затем – отделение и наконец – общее собрание академии. Проблема возникла в одном из гуманитарных отделений при выборах в секции. Мы не будем указывать ни имён, ни названий подразделений РАН, сведя всё к абстрактной задаче.
Итак, чтобы стать членом некоего общества гуманитарной направленности, надо пройти процедуру голосования на имеющиеся вакансии. Правом голоса обладают все члены общества, голосование проводится в несколько туров. Положение о выборах было написано математиками. Оно гласит:
Для избрания членом общества необходимо получить не менее ⅔ голосов лиц, принявших участие в голосовании, и не менее половины от списочного состава общества. Кандидат считается избранным в данном туре голосования, если в этом туре он получил необходимое для избрания число голосов и число всех кандидатов, получивших в этом туре такое же или большее число голосов, не превышает числа вакансий по данной специальности, оставшихся незаполненными в предыдущих турах (в первом туре – числа всех имеющихся вакансий). Если в первом туре голосования число избранных кандидатов по данной специальности оказалось меньше, чем число вакансий по этой специальности, то проводится второй тур голосования. Если по результатам первого и второго туров остались незаполненные вакансии по данной специальности, то проводится третий тур голосования.
Случилось так, что при выборах на единственную вакансию каждый из кандидатов X и Y получил во втором туре не менее ⅔ голосов лиц, принявших участие в голосовании, и не менее половины списочного состава. При этом Y собрал больше голосов, чем X.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!