📚 Hub Books: Онлайн-чтение книгДомашняяКарнавал молекул - Михаил Левицкий

Карнавал молекул - Михаил Левицкий

Шрифт:

-
+

Интервал:

-
+
1 ... 56 57 58 59 60 61 62 63 64 ... 89
Перейти на страницу:

Шарплесс изучал окисление органических веществ, т. е. введение атома кислорода в молекулу. Ему удалось создать несколько катализаторов, которые направляют реакцию в сторону образования только одного оптического изомера. На рисунке 6.3 показано как аллиловый спирт HOCH2-CH=CH2 в присутствии катализатора окисляется до соединения, представляющего собой эпоксидный цикл (трехчленный цикл из двух атомов углерода и одного кислорода). Фактически атом кислорода внедряется в двойную связь. Окислитель – органический пероксид (соединение с группировкой – О-О-), а катализатор представляет собой композицию из тетраизопропоксида титана Ti(OPr-i)4 и диэтилового эфира винной кислоты. Изящество замысла состоит в том, что в состав катализатора входит определенный оптический изомер (энантиомер) эфира винной кислоты, который и направляет всю реакцию в нужную сторону.

Карнавал молекул

Итак, исходное соединение (аллиловый спирт) не имеет оптической активности. Из него в итоге образуется только один зеркальный изомер, в нем асимметрический центр (атом С, отмеченный звездочкой), имеющий четыре различных заместителя (ближайшие к нему соседние группы). Этот атом находится в составе эпоксидного цикла (это треугольник из двух атомов С и одного атома О на рис. 6.4). Эпоксидные циклы весьма реакционноспособны, при восстановлении полученного эпоксидного соединения образуется один из зеркальных изомеров той самой молочной кислоты, которая была показана выше.

Карнавал молекул

Синтезированные по методу Шарплесса различные эпоксидные производные использовали в качестве строительных блоков при производстве лекарственных веществ для кардиологии, а также для синтеза углеводов, витаминов, антибиотиков, ароматизаторов, пестицидов, пищевых добавок. Катализаторы Шарплесса довольно быстро были доведены до промышленного использования. За эти исследования Б. Шарплесс был удостоен в 2001 г. Нобелевской премии по химии.

Провести реакцию – как кликнуть мышкой

Добившись успехов в асимметрическом катализе, Шарплесс изменил область интересов. Все началось с того, что он сформулировал набор требований к органическим реакциям нового типа. Список выглядел следующим образом:

а) условия проведения реакции должны быть простыми, желательно без нагрева;

б) исходные реагенты должны быть доступны и охватывать широкий круг реакций;

в) используемые растворители должны быть распространенными и нетоксичными (предпочтительна вода);

г) выделение продукта из реакционной смеси должно быть простым;

д) реакция должна протекать с высоким выходом основного продукта;

е) продукт реакции в процессе синтеза не должен вступать в побочные реакции;

ж) побочные продукты вообще нежелательны, а если они образуются, то должны быть инертными;

з) реакция должна протекать быстро.

При знакомстве с этим списком требований возникает ощущение, что Шарплесс просто изложил мечту каждого химика. Вероятно, многие химики-органики могли бы составить похожий список как символ несбыточных грез. Но Шарплесс сумел найти реакцию, удовлетворяющую перечисленным параметрам. Оказалось, что это давно известная реакция Артура Михаэля, открытая еще в 1893 г.: взаимодействие алкинов (производных ацетилена) с азидами (соединениями, содержащими группировку N3). В результате образуется триазольный цикл, т. е. цикл с тремя атомами N (рис. 6.5).

Карнавал молекул

Ранее эта реакция не представляла никакого интереса, поскольку протекала очень медленно (в течение суток при 120 °С) и с низким выходом основного продукта.

Все резко изменилось после того, как в 2002 г. замысел Шарплесса решил реализовать его коллега Валерий Фокин (рис. 6.6), о котором следует рассказать немного подробнее. Выпускник Нижегородского государственного университета, а сейчас профессор калифорнийского Института Скриппса, В. Фокин работает еще и в Московском физико-техническом институте над совместным проектом, а также возглавляет открытую недавно лабораторию химического синтеза на базе этого института. В 2013 г. международные агентства предсказывали ему получение Нобелевской премии за работу, о которой далее пойдет речь, но пока этого не произошло.

Карнавал молекул

Итак, В. Фокин нашел катализатор реакции Михаэля – это соединения одновалентной меди Cu+. С такими катализаторами реакция протекает в воде почти мгновенно и без образования побочных продуктов, т. е. требования к «идеальной» реакции, перечисленные Шарплессом, удалось реализовать. Шарплесс назвал ее клик-реакцией (click-reaction) по аналогии с нажатием на клавишу компьютерной мыши.

Буквально сразу же многие химики-органики стали изучать эту реакцию, используя различные производные алкинов и азидов. По общему мнению, успех был ошеломляющий, и скоро в литературе появился новый термин «клик-химия» (click-chemistry).

На самом деле Шарплесс, формулируя перечисленные выше требования, имел в виду не всю химию вообще, он мысленно ориентировался на биохимические исследования. Особую ценность найденной реакции придает то обстоятельство, что азиды и триазолы (участники клик-реакции) не встречаются в живых организмах и инертны к веществам, которые присутствуют в биологических средах. Поэтому если в природную молекулу ввести ацетиленовый фрагмент – С≡СН, то органический азид N3–R будет присоединяться исключительно к этой определенной молекуле. При этом присоединившийся азид может содержать метку: например, такую, которая флуоресцирует в ультрафиолетовом свете. Специалисты по клик-реакциям называют подобные «довески» молекулами-репортерами, которые позволяют следить за объектом и при этом не нарушают идущие в нем процессы (в отличие от обычной жизни, где различные репортеры иногда мешают какому-нибудь мероприятию ☺).

В результате клик-реакции нашли множество применений: зондирование и ингибирование ферментов, наблюдение за синтезом протеинов и ДНК, прикрепление флуоресцентных меток к вирусам и многое другое.

Тем не менее найденный метод, превосходно «работающий» на препарированных образцах, оказался непригоден для изучения живых организмов, поскольку катализаторы – соединения Cu+ – токсичны. Эту трудность удалось преодолеть; оказалось, что если изменить строение реагента, содержащего ацетиленовый фрагмент, например ввести – C≡C- в состав восьмичленного углеродного цикла, то клик-реакция протекает столь же быстро и однозначно без катализаторов (рис. 6.7).

В результате появилось направление «клик-химия без меди» (Copper-free Click Chemisty). В настоящее время созданы крупные базы исходных реагентов для клик-реакций, содержащих фрагменты аминокислот, нуклеотидов, флуоресцентных красителей. Все это позволяет направленно модифицировать биологические объекты и наблюдать за их превращениями в клетках.

1 ... 56 57 58 59 60 61 62 63 64 ... 89
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?