📚 Hub Books: Онлайн-чтение книгДомашняяАбсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер

Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер

Шрифт:

-
+

Интервал:

-
+
1 ... 58 59 60 61 62 63 64 65 66 ... 93
Перейти на страницу:

На рис. 14.12 показано, что бутан имеет другой изомер, называемый изобутаном. В изобутане центральный атом углерода соединён с тремя другими атомами углерода и одним атомом водорода, а остальные атомы углерода соединены только с центральным атомом углерода и тремя атомами водорода каждый. Все четыре атома углерода используют для образования связей sp3-гибридизированные атомные орбитали и имеют тетраэдрическую конфигурацию. Об изобутане также говорят как о разветвлённой цепи. Тот факт, что бутан может при одинаковом числе атомов углерода и водорода иметь две разные структуры, очень важен. У молекулы с бо́льшим числом атомов углерода число возможных вариантов строения может быть намного больше двух.

В дополнение к двум структурным изомерам н-бутан имеет два конформера. Конформеры — это различные формы, конформации, одного и того же набора атомов, соединённых одним и тем же способом. Они различаются за счёт того, что вокруг одиночной связи C−C может происходить вращение.

Абсолютный минимум. Как квантовая теория объясняет наш мир

Рис. 14.12. Два структурных изомера бутана C 4 H 10 . Вверху CH 3 соответствует углероду, связанному с тремя атомами водорода. н-бутан— это линейная цепь в том смысле, что каждый атом углерода связан не более чем с двумя другими атомами углерода. Изобутан имеет разветвлённую структуру. Центральный атом углерода связан с тремя другими атомами углерода

На рис. 14.13 представлен н-бутан в двух конформациях, называемых транс и гош. Оба изображённых на рисунке конформера являются н-бутаном, поскольку атомы углерода соединены одинаковым образом. Если взять верхний конформер и выполнить поворот вокруг средней углерод-углеродной связи на 120° в направлении, указанном стрелкой, то получится гош-форма. У транс-конформера все атомы углерода лежат в одной плоскости. В гош-форме три атома углерода лежат в плоскости страницы, а четвёртый выступает над ней. В действительности существует и другая гош-форма, которая образуется путём поворота транс-формы вокруг средней C−C-связи на 120° в направлении, противоположном указанному стрелкой. В этом случае те же три атома углерода остаются в плоскости страницы, а четвёртый оказывается позади неё. Эти два гош-конформера в некотором смысле имеют одинаковую форму, но они не идентичны. Они подобны левой и правой перчаткам. Как и перчатки, эти две гош-формы нельзя совместить одну с другой. Они являются зеркальными копиями друг друга. Углеродная основа, которая может иметь левую и правую форму в зависимости от направления вращения, называется хиральной.

Абсолютный минимум. Как квантовая теория объясняет наш мир

Рис. 14.13. Два конформера н-бутана. Гош-форма получается из транс-формы вращением на 120° вокруг средней C−C-связи

Вращение вокруг одиночной C−C-связи, переводящее молекулу между транс- и гош-конформациями, в жидкости при комнатной температуре может происходить очень быстро. Согласно теории, подтверждённой недавними экспериментами с ультрабыстрым инфракрасным лазером, гош-транс-переходы занимают всего 50 пс (1 пикосекунда = 10−12 сек), или 50 триллионных долей секунды. Поэтому в жидкости при комнатной температуре эти две формы бутана настолько быстро сменяют друг друга, что их невозможно изолировать в качестве отдельных молекул.

Двойные и тройные углерод-углеродные связи

Если вокруг одиночной C−C-связи совершить поворот очень легко, то для двойной или тройной углерод-углеродной связи это совсем не так. В главе 13 говорилось, что молекула O2 имеет двойную связь, а молекула N2 — тройную. Углерод-углеродные связи могут быть одиночными, двойными или тройными. Вращение вокруг двойной или тройной C−C-связи практически невозможно. Поэтому двойные связи могут фиксировать различные конформации молекул, имеющих одинаковые структурные изомеры. Как будет показано в главе 16, именно отсюда возникает термин «транс-жиры». Однако прежде, чем мы доберёмся до обсуждения таких больших молекул, как транс-жиры, нам надо поговорить о двойных и тройных C−C-связях.

В обсуждавшихся до сих пор соединениях углерод использует четыре sp3-гибридизированные атомные орбитали для создания четырёх одиночных σ-связей с другими атомами. В таких соединениях каждый атом углерода имеет тетраэдрическую конфигурацию четырёх связей. На рис. 14.3 изображена молекула формальдегида. Формальдегид содержит атом углерода с двойной связью. Чтобы показать, каким образом углерод создаёт одиночные, двойные и тройные связи, мы рассмотрим химические связи в этане, этилене и ацетилене. Эти три вещества имеют химические формулы H3C−CH3, H2C=CH2 и HC≡CH соответственно. Этан имеет одиночную связь, этилен — двойную, а ацетилен — тройную. На рис. 14.14 показано строение этих трёх молекул. В этане каждый атом углерода образует четыре связи в тетраэдрической конфигурации. В этилене каждый атом углерода образует три связи в форме треугольника, а в ацетилене атомы углерода образуют две связи, вытянутые в линию.

Хотя в каждой из трёх молекул два атома углерода связаны друг с другом, порядок их связи вносит большие различия. В табл. 14.1 приводятся значения длины и энергии C−C-связей для этих трёх молекул в зависимости от порядка связи. С увеличением порядка длина связи значительно сокращается, а энергия почти утраивается при переходе от одиночной связи к тройной.

Абсолютный минимум. Как квантовая теория объясняет наш мир

Рис. 14.14. Этан: одиночная связь, тетраэдрическая конфигурация связей углерода. Этилен: двойная связь, треугольная конфигурация связей углерода. Ацетилен: тройная связь, линейная конфигурация связей углерода

Таблица 14.1. Одиночные, двойные и тройные C−C-связи

Порядок связи, Длина связи, Энергия связи ( Дж )

Этан, Одиночная (1), 1,54Å, 5,8∙10−19

Этилен, Двойная (2), 1,35Å, 8,7∙10−19

Ацетилен, Тройная (3), 1,21Å, 16∙10−19

Двойная углерод-углеродная связь — этилен

Для начала рассмотрим связь в молекуле этилена. Из рис. 14.15 видно, что углеродные центры здесь имеют треугольную форму. Как уже говорилось, для получения треугольной формы связей атом углерода будет использовать три sp2-гибридизированные атомные орбитали для образования МО (см. рис. 14.7). Углерод имеет четыре валентные орбитали, служащие для образования химических связей: 2s, 2px, 2py и 2pz. В верхней части указанного рисунка молекула этилена располагается в плоскости xy. Таким образом, атомы углерода и водорода лежат в плоскости страницы, которая и есть xy. Чтобы образовать треугольную конфигурацию гибридных sp2-орбиталей, служащих для формирования трёх связей, оба атома углерода используют 2s-, 2px- и 2py-орбитали. С тремя гибридными sp2-орбиталями каждый атом углерода будет создавать три σ-связи: одну — с другим атомом углерода и две — с атомами водорода. Эти σ-связи показаны в верхней части рис. 14.15.

1 ... 58 59 60 61 62 63 64 65 66 ... 93
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?