Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос
Шрифт:
Интервал:
Начиная с 1952 года почти всегда наибольшим известным простым числом было простое число Мерсенна. Единственным исключением явилась трехлетняя интерлюдия между 1989 и 1992 годом, когда самым большим простым числом считалось (391 581 × 2216 193) - 1, которое, впрочем, относится к типу простых чисел, связанных с мерсенновскими простыми. Среди всех существующих простых чисел (а мы знаем, что их бесконечно много) в таблице наибольших открытых простых преобладают простые числа Мерсенна, поскольку они представляют собой прекрасную мишень для охотников за простыми числами. Лучшая тактика поиска больших простых чисел — это искать простые числа Мерсенна; другими словами, отправлять число 2n - 1 в компьютер при все больших и больших значениях n и использовать для проверки его простоты тест Люка — Лемера, представляющий собой усовершенствованный вариант упоминавшегося выше метода Эдуара Люка.
* * *
Самого влиятельного из охотников за простыми числами нашего времени привела на этот путь марка на конверте. В 1960-х годах, когда Джордж Уолтман был еще ребенком, его отец показал ему почтовую марку, на которой был изображен Университет Иллинойса и написано «211213 - 1 простое» — это был результат, только что установленный в этом университете. «Это меня просто потрясло — оказывается, можно доказать, что такое большое число — простое», — вспоминает он.
Уолтман внес немалый вклад в написание программ, существенным образом продвинувших поиск простых чисел. Все проекты, имевшие дело с масштабной обработкой чисел, как правило, выполнялись на суперкомпьютерах, доступ к которым ограничен. Начиная с 1990 года, однако, немало больших задач подвергались «нарезке» наподобие салями — работа разбивалась на части, которыми занимались тысячи меньших машин, связанных друг с другом через Интернет. В 1996 году Уолтман написал программу, которую пользователи могут бесплатно скачать, а установив ее, получить маленький кусок еще неисследованной части числовой прямой для поиска там простых чисел. Эта программа использует процессор, только когда ваш компьютер ничего не делает. Пока вы крепко спите, ваша машина занята тем, что перетряхивает числа на дальнем рубеже познания.
Великий «интернет-поиск мерсенновских простых», или GIMPS, в настоящее время связывает около 75 000 компьютеров. Часть из них стоит в научно-исследовательских учреждениях, другие — в офисах, а некоторые — дома у энтузиастов поиска. GIMPS был одним из первых проектов «распределенных вычислений» и оказался одним из наиболее успешных. (Самый масштабный из подобных проектов — SetiKhome, который занят расшифровкой космического шума в поисках сигналов от внеземных цивилизаций. Утверждается, что в нем участвуют три миллиона ученых, правда, они до сих пор ничего не открыли.) Спустя всего лишь несколько месяцев после запуска GIMPS 29-летний французский программист поймал в свои сети 35-е простое число Мерсенна, 21398269 - 1. С тех пор GIMPS обнаружил еще 11 мерсенновских простых, что соответствует в среднем одному числу в год. Мы живем в золотой век больших простых чисел.
На настоящий момент рекорд самого большого простого числа удерживает 45-е простое число Мерсенна, 243112609 - 1 — это число, в котором почти 13 миллионов цифр, найдено в 2008 году на компьютере, подсоединенном к GIMPS, в Калифорнийском университете в Лос-Анджелесе. Простые числа Мерсенна, найденные по счету 46-м и 47-м, оказались меньше 45-го. Это произошло потому, что различные компьютеры с различными быстродействиями одновременно работают на различных участках числовой прямой, и может так случиться, что простые числа на более далеком ее участке будут открыты раньше, чем на более близком.
Проект GIMPS стал примером массового добровольного сотрудничества в целях научного прогресса, и это сделало его символом свободного Интернета. Уолтман, даже не помышляя ни о чем подобном, превратил поиск простых чисел в квазиполитическое предприятие. С целью подчеркнуть символическую важность этого проекта Фонд электронных рубежей (Electronic Frontier Foundation, EFF) — группа, ведущая кампанию за цифровые права, — начиная с 1999 года предлагает денежное вознаграждение за каждое новое простое число, количество цифр в котором достигнет следующего порядка величины. Первым простым числом, добравшимся до 10 миллионов цифр, оказалось 45-е простое число Мерсенна, призовая сумма за него составила 100 000 долларов. Фонд EFF предлагает 150 000 долларов за первое простое число, состоящее из 100 миллионов цифр, и 250 000 долларов за первое, состоящее из миллиарда. Если нанести на график самые большие простые числа, полученные за все последние годы начиная с 1952-го, то в логарифмическом масштабе, как показано ниже, эти числа выстроятся почти в прямую линию. Эта прямая показывает, как замечательным образом постоянно возрастала мощь процессоров, а кроме того, позволяет оценить, когда будет открыто первое простое число, состоящее из миллиарда цифр. Бьюсь об заклад, это открытие произойдет ближе к 2025 году.
Число цифр в наибольших известных простых числах в различные годы
При том что простых чисел бесконечно много (хотя бесконечно ли количество мерсенновских простых — пока не известно), поиск все больших и больших простых — задача, конца которой нет. Какого бы простого числа мы ни достигли, и не важно, насколько большого, всегда найдется еще большее простое число — дразнящее нас и бросающее вызов.
* * *
Продолжение, которому нет конца, — самая, пожалуй, глубокая и многообещающая идея в фундаментальной математике. Человеческое сознание с трудом воспринимает понятие бесконечности. Например, что случится, если мы начнем считать 1, 2, 3, 4, 5 и никогда не остановимся? Я помню, как ребенком задавал этот с виду простой вопрос — и не получал ясного ответа. Как правило, я слышал от родителей и школьных учителей, что вот тогда мы доберемся до «бесконечности», что есть, по сути, лишь перефразировка самого вопроса.
Тем не менее нам с относительного юного возраста внушают мысль, что с бесконечностью можно обращаться как с числом — необычным, но тем не менее числом. Нам показывают обозначение для бесконечности — горизонтальную замкнутую петлю («лемнискату») и знакомят нас с ее необычной арифметикой. Прибавление любого конечного числа к бесконечности дает бесконечность. Вычитание любого конечного числа из бесконечности дает бесконечность. Умножение или деление бесконечности на конечное число, если только это не нуль, снова дает бесконечность. Легкость такого обращения с бесконечностью как с числом скрывает более двух тысячелетий борьбы за то, чтобы найти общий язык с ее тайнами.
* * *
Первым, кто показал, что если иметь дело с бесконечностью, то могут возникнуть проблемы, был греческий философ Зенон Элейский (490 до н. э. — 430 до н. э.). В одном из своих знаменитых парадоксов он описал теоретическую гонку между Ахиллом и черепахой. Ахилл быстрее черепахи, поэтому черепаха при старте имеет фору. Прославленный воин начинает движение из точки А, а бросившая ему вызов рептилия — из точки В. Ахилл устремляется вперед и вскоре достигает точки В, но к тому моменту, как он туда добирается, черепаха уже продвинулась в точку С. Ахилл мчится в точку С. Но опять, когда он достигает этой точки, черепаха уже продвинулась вперед до точки D. Ахиллу надо, конечно, добраться до D, но, когда он туда попадает, черепаха уже будет в точке E. Зенон утверждает, что эта игра в «догонялки» будет продолжаться вечно, и поэтому быстроногий Ахилл никогда не обгонит неторопливого четвероногого соперника.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!