Самая главная молекула. От структуры ДНК к биомедицине XXI века - Максим Франк-Каменецкий
Шрифт:
Интервал:
Вскоре после создания компании произошла забавная история. Две школьницы в Нью-Йорке посетили несколько суши-баров и рыбных магазинов и собрали образцы сырой рабы с указанием того, за какой сорт рыбы эти образцы выдавались. Они отослали все образцы в канадскую компанию и сравнили результат ДНК-штрихкодирования с тем, за что платили деньги. Результат оказался шокирующим: только в двух из четырех суши-баров и в четырех из десяти магазинов с ними поступили честно. Все остальные бары и магазины жулили, подменяя более дорогую рыбу более дешевой, но похожей по виду рыбьего мяса. Разразился скандал, получивший название «Сушигейт». Вскоре аналогичная история случилась в Бостоне, где сходное расследование провела местная газета. Эти события произошли в 2008 году. С тех пор суши-бары и рыбные магазины, по крайней мере в Нью-Йорке и Бостоне, регулярно инспектируются на предмет тестирования ДНК подаваемой там сырой рыбы.
После того, как уже совсем недавно был разработан метод ДНК-штрихкодирования растений, подобный скандал разразился с пищевыми добавками. Оказалось, что состав практически всех продаваемых в США добавок не имеет ничего общего с указанным на этикетке. Вместо экзотических трав из Тибета или откуда-то еще они содержат примерно одни и те же тривиальные пищевые компоненты.
Конечно, было бы здорово, если бы все мы могли проводить подобное тестирование, посетив любой ресторан, и не только японский. Всегда ли мы уверены, что едим жаркое из баранины, а не из собаки или кошки? К сожалению, проверить это невозможно, по крайней мере с использованием ДНК. При тепловой обработке ДНК очень быстро деградирует: ее цепи рвутся, и определение последовательности становится невозможным. Так что в отношении приготовленной пищи нам и дальше придется мириться с проклятой неизвестностью. Я, по крайней мере после «Сушигейта», никогда не уверен, что ем в ресторане, особенно в отношении приготовленной рыбы.
Деградация ДНК – очень существенное препятствие на пути осуществления всяческих проектов по воссозданию исчезнувших видов. Все смотрели знаменитый фильм Стивена Спилберга «Парк Юрского периода». Интересно, что изначально он создавался вроде бы на вполне научной основе. Это была сенсация. В начале 1990-х годов, вскоре после изобретения метода ПЦР, в самом престижном научном журнале Nature появились сообщения об определении последовательности ДНК из комаров, сохранившихся со времен Юрского периода (который был 200 миллионов лет назад) в янтаре! Дальше идея состояла в том, что такой комар мог напиться крови своего современника-динозавра и тем самым ДНК динозавра могла сохраниться до наших дней. Действительно, исследователи утверждали, что они нашли последовательности ДНК, принадлежавшие динозавру. Таким образом можно было бы восстановить геном динозавра, синтезировать его ДНК, ввести ее в оплодотворенную яйцеклетку какой-нибудь рептилии, из которой бы вырос настоящий динозавр. Как-то так, вкратце.
Загвоздка только в том, что очень скоро выяснилось, что опубликованные в Nature статьи были ошибочными. Никакая это была не ДНК динозавра. То, что они секвенировали, оказалось собственной ДНК исследователей, которая попала в качестве загрязнения в образцы из янтаря. Постепенно стало ясно, что никакой ДНК из древнего янтаря вообще извлечь невозможно: за такое время, да при таких температурах ДНК полностью деградирует, без остатка. Теперь считается, что в тепле ДНК вообще не может сохраняться в течение миллионов лет. Во льду ДНК может сохраняться очень долго, может быть, и миллионы лет. В отношении динозавров беда состоит в том, что со времени их исчезновения Земля прошла периоды очень сильного потепления наряду с периодами оледенения. Не представляется разумным считать, что где-то остались образцы ДНК динозавров, которые все эти сотни миллионов лет непрерывно находились во льду.
Так что сценарий «Парка Юрского периода» из более или менее научной фантастики быстро перешел в разряд фантастики ненаучной. Впрочем, есть проект, куда менее амбициозный, но зато не совсем нереальный. Речь идет о воссоздании мамонта. В нашем распоряжении имеются туши мамонтов, сохранившиеся в вечной мерзлоте со времен последнего ледникового периода, и это позволило секвенировать геномы нескольких мамонтов. Дальнейшая перспектива введения этой ДНК в оплодотворенную яйцеклетку слонихи представляется значительно более туманной, хотя отдельные гены мамонта уже удалось вставить в геном слонихи. Наверное, в конечном счете задачу воссоздания мамонта можно решить, но это потребует такой уймы денег и таких многолетних усилий, что конечный результат – появление живого мамонта – вряд ли того стоит.
Как же добиться того, чтобы «немусорная» часть генома тоже не пропадала без дела, а работала на медицину и вообще позволила бы разобраться во всех сложностях работы организма? В этом отношении ситуация в начале 2000-х годов оказалась очень похожей на кризис начала 1970-х, описанный в главе 4. Тогда все уперлось в необходимость аккуратно разрезать ДНК на куски. Произошедший тогда прорыв (открытие рестриктаз) привел в конечном счете к расшифровке генома. Теперь, имея в руках геном, исследователи вновь почувствовали себя беспомощными. Как разобраться во всей этой мешанине из многих тысяч генов? Как узнать, какие гены отвечают за те или иные функции, за те или иные болезни? Неужели опять, как в догеномную эру, вся надежда на выявление мутантов с последующей тяжелейшей работой по анализу мутаций? Зачем же тогда геном? За что боролись?! Но даже если мы точно знаем, какое изменение на уровне ДНК приводит к болезни, лечить-то как? Неужто по старинке, методом тыка, испытывая миллионы разных химических соединений – авось какое-то и подействует? Было от чего впасть в уныние.
И вот, представьте себе, ровно как в случае с кризисом 1970-х, помощь пришла совершенно неожиданно и откуда ее никто не ожидал. Только это было еще более удивительно. Ведь тогда, в начале 1970-х, наука о ДНК, молекулярная биология, была еще молодой и много чего предстояло еще наоткрывать. Другое дело теперь, в 2000-х. Громадная армия исследователей «утюжила» эту область вдоль и поперек в течение полувека. Как же можно было проворонить нечто принципиальное? Выходит, что можно.
То, что так долго не замечали, носит странное название РНК-интерференция, или РНКи (RNAi по-английски). Это та самая система РНКи, о которой речь шла в конце главы 6 в связи с иммунитетом у растений. Эта система, основным элементом которой являются короткие интерферирующие молекулы РНК (киРНК), возникнув у растений как механизм защиты от вирусов, сохранилась в ходе эволюции, хотя у животных она играет другую роль. По-видимому, киРНК принимали за РНКовый мусор, за продукт естественной деградации разных молекул РНК, и потому так долго не обращали на них внимание. Что же в них такого особенного, в этих коротких РНК, почему о них вдруг все заговорили? Более того, все вдруг стали ими заниматься. Дело в том, что киРНК делают в клетке именно то, что нам необходимо научиться делать, чтобы выйти из постгеномного кризиса: они избирательно «глушат» гены.
Делают они это на уровне мРНК; киРНК (они имеют практически строго определенную длину: 21 нуклеотид) связываются, согласно обычному правилу комплементарности, с участком мРНК. Специальные ферменты системы РНКи распознают этот комплекс и деградируют мРНК. Поскольку, как правило, только один тип молекул мРНК, отвечающий какому-то одному белку, имеет участок, комплементарный данной 21-членной РНК, эта киРНК выключает синтез только конкретного белка.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!