📚 Hub Books: Онлайн-чтение книгДомашняяМикрокосм. E. coli и новая наука о жизни - Карл Циммер

Микрокосм. E. coli и новая наука о жизни - Карл Циммер

Шрифт:

-
+

Интервал:

-
+
1 ... 63 64 65 66 67 68 69 70 71 ... 84
Перейти на страницу:

Но дальнейшие попытки специалистов построить более масштабные схемы могут встретить на своем пути новое препятствие: саму E. coli. Несмотря на все усилия ученых, многое в этом микроорганизме до сих пор непонятно. Шестьсот его генов остаются полнейшей загадкой. Особенно туманна структура его генетической сети. Ученые могут распознать большинство транскрипционных факторов[30] E. coli, то есть большинство белков, включающих и выключающих гены. Но о том, чем эти гены управляют, известно гораздо меньше. А то, что специалисты знают о E. coli наверняка, иногда очень их расстраивает.

Управляющие схемы E. coli перекрывают друг друга, образуя такую путаницу, какую не сконструировал бы ни один уважающий себя инженер. Очень трудно предсказать, как дополнительные цепи, введенные человеком, изменят общее поведение такой сложной и запутанной системы.

Некоторые специалисты по синтетической биологии считают, что преодолеть слабости E. coli можно, только если разобрать ее на части и собрать заново. В Гарвардском университете, к примеру, Джордж Чёрч с коллегами уже составил список из 151 гена, которых, по их мнению, было бы достаточно для живого организма. Механизм действия этих генов, которые в основном взяты у E. coli и ее вирусов, ученые понимают хорошо. Составленная из них система вроде бы не должна таить особых загадок. Чёрч надеется искусственно собрать из этих основополагающих генов полноценный геном и, совместив их с мембраной и рибосомами (их задача — строительство белков), создать живой организм. Назовем его E. coli 2,0.

Тем временем Альберт Либхабер из Университета Рокфеллера предпочел еще более простой подход. Вместе с коллегами он приготовил раствор, содержащий рибосомы и некоторые химические вещества, которые можно обнаружить в клетках E. coli. Вместо полного генома они создали всего лишь небольшие плазмиды. Затем они заключили гены и молекулы в искусственную двухслойную фосфолипидную оболочку, добавив необходимые для этого вещества. Команда Либхабера обнаружила, что эти пузырьки способны жить — по крайней мере несколько часов. В одном из генов, добавленных Либхабером в плазмиды, был закодирован белок, формирующий поры в мембране. Протоклетки считывали этот ген, строили молекулы соответствующего белка и встраивали их в мембрану. Образовавшиеся поры позволяли аминокислотам и другим небольшим молекулам проникать внутрь протоклетки, но не выпускали наружу плазмиды и другие крупные молекулы. Чтобы отследить производство новых молекул белка, ученые добавили в плазмиды ген, взятый у жука — светляка. Протоклетка светилась холодным зеленоватым светом. Либхабер не называет свое творение живым организмом. Он предпочитает термин «биореактор». Переход от биореактора к настоящей жизни потребует дополнительных усилий, и немалых. Либхаберу и его коллегам придется по крайней мере добавить некоторое количество генов, чтобы обеспечить биореакторам возможность деления на новые биореакторы.

Чёрч и Либхабер только начинают разбираться в том, как следует использовать E. coli при создании новых живых систем. Они не могут просто собрать в одном месте ДНК и другие необходимые молекулы и оставить их в покое, чтобы они ожили самостоятельно. Жизнь не похожа на компьютер, который загружается просто по нажатию кнопки. Каждая живущая сегодня E. coli происходит от предка, у которого, естественно, тоже есть предки. Все это вместе образует непрерывную биологическую реку, текущую уже не один миллиард лет. Жизнь — такая, какой мы ее знаем — всегда была частью этой реки. Но в будущем нам, возможно, удастся организовать собственную протоку.

Возвращение бактерии Франкенштейна

В мае 2006 г. специалисты по синтетической биологии собрались в Беркли (штат Калифорния) на вторую между — народную встречу. Наряду с обычным обсуждением текущих исследований участники выделили время на то, чтобы набросать предварительный вариант профессионального кодекса. Накануне этого дня 35 организаций, включая защитников окружающей среды, общественных активистов и специалистов по биологическому оружию, выпустили открытое письмо, в котором призвали собравшихся воздержаться от резолюций. По мнению авторов письма, им следовало вместо этого присоединиться к публичным дебатам о синтетической биологии и быть готовыми подчиниться решениям своих правительств. «Биотехнологии уже дали повод для протестов по всему миру, но синтетическая биология — что‑то вроде генной инженерии на стероидах», — сказала Дорин Стабински из организации Greenpeace International.

Биотехнологии в настоящее время переживают своеобразное дежавю. Вопросы, о которых сегодня спорят, поразительно похожи на те, что поставила перед ученым сообществом в 1970–е гг. первая генетически модифицированная E. coli. Оправдывают ли возможные выгоды риск? Есть ли что‑то изначально неправильное во внесении генетических изменений в живые системы? Новые споры намного сложнее прежних, отчасти потому, что E. coli — не единственный объект манипуляций ученых. Мы не должны упускать из виду ни трансгенные сельскохозяйственные растения, ни модифицированные стволовые клетки, ни химеры, соединяющие в себе свойства человека и животных. Сегодня споры часто сосредоточены на тонких моментах, связанных с медициной, охраной природы, патентным правом или международной торговлей. Но, несмотря на все различия, между — тем и этим временем существуют сильные и поразительные параллели. Чтобы разобраться в потенциальных ри — сках и выгодах новой биотехнологии, полезно оглянуться на судьбу генетически модифицированной E. coli за последние три десятка лет.

Отчаянные предупреждения об эпидемиях онкологических заболеваний и инсулинового шока из‑за E. coli сегодня кажутся нелепыми. За 30 лет генетически модифицированная E. coli не нанесла никакого документально подтвержденного вреда, несмотря на то что на фабриках эту бактерию разводят в биореакторах емкостью по 40 000 л, где каждый миллилитр раствора содержит порядка миллиарда особей. Никто, кроме Господа Бога, не в состоянии проследить судьбу каждой модифицированной E. coli за последние 30 лет, поэтому невозможно точно сказать, почему не произошли предсказанные катастрофы. Некоторые выводы, правда, можно сделать по результатам экспериментов. Ученые поместили E. coli К-12, несущую человеческие гены, в емкость с илом, в бак с водой и в кишечник животного. Выяснилось, что во всех трех средах бактерии очень быстро исчезли. Дело, вероятно, в том, что генетически модифицированные E. coli направляют много энергии и сырья на производство белков, кодируемых генами, введенными в их геном. Но эти белки, к примеру инсулин или средства для разжижения крови, вряд ли ускоряют рост бактерии или повышают ее шансы на выживание. В тщательно контролируемых условиях, созданных учеными в лабораториях, эти микроорганизмы чувствуют себя неплохо, но конкуренции с другими бактериями они не выдерживают.

Не генетики первыми начали вводить в клетки E. coli гены других биологических видов. В каком‑то смысле эти бактерии подвергались генно — инженерным модификациям на протяжении миллиардов лет. В дикой природе, однако, большинство актов переноса генов заканчивается полной неудачей. Бактерии не в состоянии синтезировать белки, за которые отвечают многие гены, привнесенные в геном за счет горизонтального переноса, и естественный отбор подхватывает мутации, устраняющие большинство чужеродных генов.

1 ... 63 64 65 66 67 68 69 70 71 ... 84
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?