📚 Hub Books: Онлайн-чтение книгДомашняяДостучаться до небес. Научный взгляд на устройство Вселенной - Лиза Рэндалл

Достучаться до небес. Научный взгляд на устройство Вселенной - Лиза Рэндалл

Шрифт:

-
+

Интервал:

-
+
1 ... 68 69 70 71 72 73 74 75 76 ... 123
Перейти на страницу:

Соленоид достаточно велик, чтобы трекеры и калориметры можно было разместить внутри него. Мюонные детекторы, с другой стороны, располагаются снаружи, вдоль внешней поверхности детектора. При этом четыре внутренних слоя мюонного детектора вплетены в громадную железную конструкцию, которая окружает магнитную катушку; эта конструкция сдерживает и направляет магнитное поле, обеспечивая его однородность и стабильность. Конструкция длиной 21 м и диаметром 14 м простирается до полного семиметрового радиуса детектора. По существу, она тоже является частью мюонной системы — ведь по идее только мюоны из всех известных заряженных частиц способны преодолеть 10 000 т железа и пройти сквозь мюонные камеры. (На самом деле энергичные адроны тоже иногда проходят сквозь все это, доставляя экспериментаторам головную боль.) Магнитное поле ярма отклоняет мюоны во внешнем детекторе. Поскольку степень отклонения мюона в магнитном поле зависит от его импульса, ярмо необходимо для измерения импульсов и энергий этих частиц. Структурно стабильный громадный магнит играет и еще одну важную роль. Он является несущей конструкцией установки и защищает ее от гигантских сил, порожденных ее собственным магнитным полем.

Магнит детектора ATLAS сконфигурирован совершенно иначе. В этом детекторе используются магниты двух разных систем: соленоид на 2 Тл, окружающий систему трекеров, и громадные тороидальные магниты во внешней части детектора, слои которых перемежаются со слоями мюонных камер. Если взглянуть на фотографию ATLAS (или на саму установку), то самыми заметными элементами окажутся восемь громадных тороидальных структур (см. рис. 34) и два дополнительных тороида, прикрывающих концы цилиндра. Генерируемое ими магнитное поле тянется на 26 м вдоль оси пучка и на 11 м от начала мюонного спектрометра в радиальном направлении.

При посещении ATLAS мне рассказывали, что в момент установки на место эти магниты были овальными (если смотреть сбоку). Инженеры учли фактор гравитации и верно рассчитали, что через некоторое время после установки тороиды под действием собственного веса станут более круглыми.

Сильное впечатление на меня произвела еще одна история. Оказывается, инженеры ATLAS учли крохотное поднятие пола тоннеля примерно на 1 мм в год за счет гидростатического давления породы, связанного с образованием в ней полости. Они рассчитали установку таким образом, чтобы это крохотное движение привело ее в оптимальное положение в 2010 г., когда намечался первый пуск коллайдера на полную мощность. Из‑за всевозможных задержек получилось не так, однако к настоящему моменту грунт под установкой перестал двигаться, и теперь она до конца эксплуатации останется в правильном положении. Несмотря на сентенцию бейсболиста и философа Йоги Берра о том, что «предсказывать трудно, особенно будущее», инженеры ATLAS сделали все верно.

РАСЧЕТЫ

Ни одно описание БАКа не может быть полным без разговора о его громадных вычислительных мощностях. Помимо замечательных технических решений, в результате которых были созданы трекеры, калориметры, мюонные системы и магниты и которые мы только что обсудили, можно говорить о том, что для обработки ошеломляющего количества данных, порождаемого многочисленными столкновениями, необходимы тщательно скоординированные и организованные вычисления, которые проводятся одновременно по всему миру.

Тот факт, что БАК работает с в 7 раз более высокими энергиями, чем тэватрон (прежний рекордсмен по энергии столкновений), — это еще не все. События в нем происходят в 50 раз чаще. БАК должен справляться с данными (по существу, с картинками очень высокого разрешения) о событиях, которые происходят с частотой примерно до миллиарда столкновений в секунду, причем «картинка» каждого события содержит около мегабайта информации.

С таким объемом данных не могла бы справиться ни одна вычислительная система. Поэтому специальные триггерные системы «на лету» принимают решения о том, какую информацию следует сохранить, а от какой можно избавиться. Разумеется, львиную долю составляют совершенно обычные столкновения протонов с участием сильного взаимодействия. Большая часть этих столкновений никому не интересна, потому что они представляют хорошо известные физические процессы и не дают ничего нового.

Столкновение протонов в каком‑то смысле напоминает столкновение двух мешочков с горохом. Эти мешочки мягкие, поэтому большую часть времени они мотаются из стороны в сторону, сжимаются и не делают во время столкновения ничего интересного. Но иногда при «стыковке» мешочков отдельные горошины сталкиваются друг с другом лоб в лоб с огромной силой — иногда настолько большой, что мешочки лопаются. В этом случае отдельные столкнувшиеся горошины с силой разлетаются во все стороны, потому что они твердые и энергия их столкновений более локализована, а остальные горошины продолжают лететь дальше в том же направлении.

Точно так же при столкновении протонов в пучке отдельные их составляющие могут столкнуться друг с другом и породить интересное явление, тогда как остальные объекты продолжат свой полет по трубке в прежнем направлении.

Однако в отличие от столкновения горошин, при котором они просто меняют направление полета, столкновение протонов проходит иначе. Их составные части — кварки, антикварки и глюоны — сталкиваются между собой; при этом первоначальные частицы могут превратиться в энергию или породить другие типы вещества. И если на более низких энергиях в столкновениях принимают участие в первую очередь три валентных кварка, несущие на себе заряд протона, то на более высоких энергиях виртуальные квантово–механические эффекты порождает значительное количество глюонов и антикварков, как мы уже видели в главе 6. Ученым интересны те столкновения, в которых участвует хоть что‑нибудь из этих виртуальных составляющих протона.

В энергичном протоне высокой энергией обладает не только он сам, но и все содержащиеся внутри кварки, антикварки и глюоны. Тем не менее их энергия никогда не равняется полной энергии протона, а составляет, как правило, лишь небольшую ее долю. Поэтому чаще всего в столкновениях кварков и глюонов задействуется слишком малая часть энергии протона, и тяжелые частицы не рождаются. Возможно, из‑за невысокой силы взаимодействия или недостаточной для новых частиц массы интересные столкновения с участием невиданных доселе частиц или сил случаются гораздо реже, чем «скучные» столкновения в рамках Стандартной модели.

Как и в случае с мешочками, большинство столкновений не вызывают особого интереса. В них протоны либо всего лишь слегка касаются друг друга, либо сталкиваются, порождая обычные события Стандартной модели, о которых нам уже известно и которые не в состоянии научить нас ничему новому. С другой стороны, прогнозы говорят о том, что примерно одно столкновение из миллиарда в БАКе может оказаться интересным и породить какую‑нибудь новую частицу, такую, например, как бозон Хиггса.

Итак, суть дела сводится к тому, что сколько‑нибудь интересные события происходят лишь в короткие удачные промежутки времени. Теперь ясно, почему нам нужно так много столкновений и почему нам важна так называемая светимость коллайдера. Лишь небольшая доля происходящих в нем событий оказывается необычной и несет в себе новую информацию.

1 ... 68 69 70 71 72 73 74 75 76 ... 123
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?