Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос
Шрифт:
Интервал:
Как видим, чем большее число раз бросаются кости, тем выше вероятность выпадения двух шестерок: 0,028 при одном бросании, 0,055 при двух и 0,081 при трех. Поэтому исходный вопрос можно перефразировать так: «После скольких бросаний эта дробь превысит 0,5?» — ведь вероятность, превосходящая половину, означает, что событие скорее произойдет, чем нет. Паскаль получил правильный ответ: требуется 25 бросаний. Если шевалье ставил на выпадение двух шестерок за 24 бросания, то следовало ожидать, что он потеряет деньги, но после 25 бросаний шансы начинают склоняться в его сторону, и он может рассчитывать на выигрыш.
Второй вопрос де Мэрэ — о разделении денег, стоящих на кону, — часто называют задачей о разделе ставки, и вопрос этот ставился и до того, как за него взялись Ферма и Паскаль, но правильного решения никто не нашел. Переформулируем сначала этот вопрос в терминах орлов и решек. Жан выигрывает каждый раунд, когда монета падает орлом, а Жак — когда решкой. Первый из игроков, победивший в трех раундах, забирает стоящие на кону деньги в размере 64 франков. Пусть теперь в тот момент, когда счет 2:1 в пользу Жана (два орла и одна решка), игру приходится внезапно прервать. Если такое случилось, то как самым справедливым образом поделить банк? Один возможный ответ такой: деньги должен забрать Жан, потому что он лидирует; однако при этом не учитывается, что и у Жака есть шанс выиграть. А вот другой возможный ответ: Жан должен получить вдвое больше, чем Жак; но и это не вполне справедливо, потому что счет 2:1 отражает лишь прошлые события и никоим образом не говорит о том, что случится в будущем. Способности Жана к угадыванию ничем не превосходят способности Жака. Каждый раз, когда они бросают кости, имеются шансы 50:50, что монета ляжет орлом или решкой. Наилучший — и самый справедливый — анализ состоит в том, чтобы рассмотреть, что может произойти в будущем. Если монету бросают еще два раза, то вероятные исходы таковы:
орел, орел орел, решка решка, орел решка, решкаПосле этих двух подбрасываний монеты игра непременно закончится чьей-то победой. В первых трех случаях побеждает Жан, а в четвертом — Жак. Самый справедливый способ поделить банк — это отдать 3/4 Жану и 1/4 Жаку, то есть 48 франков — Жану, и 16 — Жаку. Теперь это кажется простым, но в XVII столетии сама мысль о том, что случайные события, которые еще не произошли, можно анализировать математически, представляла собой мощный концептуальный прорыв. Именно эта концепция лежит в основе нашего научного понимания значительной части современного мира, от физики до финансов и от медицины до маркетинговых исследований.
* * *
Через несколько месяцев после того, как он отправил письмо Ферма, Паскаль пережил мистический транс. Придя в себя, он записал свои мысли на листке бумаги, который затем постоянно носил с собой в специальном кармашке, вшитом в подкладку камзола[54]. Быть может, это была реакция на страх близкой смерти — после случая, когда его карета лишь чудом удержалась на мосту, в то время как передние лошади уже сорвались за парапет, — а может, это была эмоциональная реакция на упадок игорных заведений в предреволюционной Франции — но, как бы то ни было, в Паскале ожила его тяга к идеям янсенизма[55], строгому варианту католицизма, и он забросил математику, сосредоточившись на теологии и философии.
Несмотря на благочестивые намерения Паскаля, его наследие оказалось в большей степени мирским, чем духовным. Теория вероятностей — основа невероятно доходной игорной индустрии. Некоторые историки даже приписывают Паскалю изобретение рулетки. Правда это или нет, но колесо рулетки, несомненно, имеет французское происхождение[56]. К концу XVIII века рулетка стала одним из самых популярных развлечений парижан. Правила игры таковы: шарик запускается по внешнему ободу рулетки в сторону, противоположную вращению внутреннего колеса. Он должен свалиться в одну из 38 ячеек, расположенных на колесе. Ячейки пронумерованы от 1 до 36 и окрашены в чередующиеся красный и черный цвета. Есть также две дополнительные ячейки 0 и 00, они зеленого цвета. Игрокам предлагается делать ставки, предсказывая, куда попадет шарик. Самая простая ставка — на то, что шарик остановится на некотором определенном числе. Если число это угадано правильно, заведение платит игроку выигрыш, в 35 раз превышающий его ставку. Так, ставка в 10 долларов принесет вам 350 долларов (и вам еще вернут и вашу поставленную на кон десятку).
Рулетка — очень эффективная машина по производству денег, и, чтобы увидеть, почему это так, нам следует познакомиться с новой концепцией — математического ожидания. Это то, чего вы можете ожидать в качестве исхода сделанной ставки. Например, какой выигрыш я могу ожидать, если я поставил на определенное число? Математическое ожидание вычисляется путем умножения вероятности каждого исхода на цену этого исхода и суммирования всех полученных произведений. При ставке на конкретное число вероятность выигрыша равна 1/38, поскольку имеется 38 потенциально возможных исходов. Поэтому, ставя 10 долларов на любое конкретное число, я предполагаю выиграть следующую сумму (деньги, которые на самом деле выигрываются, берутся со знаком плюс, а те, что оказываются проигранными, — со знаком минус):
(вероятность остановки на данном числе) × (соотв. выигрыш) + (вероятность остановки на другом числе) × (соотв. выигрыш),
что есть
(1/38 × $350) + (37/38 × -$10) = -52,6 цента.
Другими словами, я ничего не выигрываю. Ожидаемым результатом является проигрыш в 52,6 цента на каждые 10 поставленных долларов. Разумеется, сделав одну ставку, я никогда не проиграю 52,6 цента. Я или выиграю 350 долларов, или проиграю 10. Значение -52,6 цента — теоретическое, но в среднем, если я буду продолжать делать ставки, мои потери будут близки к 52,6 цента на ставку. Иногда я буду выигрывать, а иногда проигрывать, но если играть в рулетку долго, продолжая ставить на число, то гарантировано, что в результате у меня окажется меньше, а у заведения, наоборот, больше денег, чем вначале.
У всех других ставок при игре в рулетку — на два числа или более, на сектора, цвета или комбинации — ожидаемый выигрыш равен -52,6 цента, за исключением ставки на «пять чисел», то есть на остановку шарика в 0, 00, 1, 2 или 3, для которой шансы еще хуже: ожидаемая потеря составляет 78,9 цента.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!