📚 Hub Books: Онлайн-чтение книгДомашняяЗакрученные пассажи. Проникая в тайны скрытых размерностей пространства - Лиза Рэндалл

Закрученные пассажи. Проникая в тайны скрытых размерностей пространства - Лиза Рэндалл

Шрифт:

-
+

Интервал:

-
+
1 ... 74 75 76 77 78 79 80 81 82 ... 146
Перейти на страницу:

Другим уровнем энергии является планковский масштаб, который на шестнадцать порядков величины, т. е. в десять миллионов миллиардов (1016) раз, больше, чем масштаб энергии слабых взаимодействий. Планковский масштаб энергий определяет интенсивность гравитационных взаимодействий: закон Ньютона утверждает, что интенсивность обратно пропорциональна квадрату этой энергии. И так как интенсивность тяготения мала, планковский масштаб масс (связанный с планковским масштабом энергии формулой E = mc2) большой. Огромный планковский масштаб масс эквивалентен необычайно слабому тяготению.

До сих пор планковский масштаб масс не возникал в наших обсуждениях физики частиц, так как тяготение настолько мало, что в большинстве относящихся к физике частиц вычислений им можно было спокойно пренебречь. Но именно на этот вопрос хотят получить ответ физики-частичники: почему тяготение столь слабо, что им можно пренебречь в вычислениях по физике частиц? Другой способ сформулировать проблему иерархий состоит в том, чтобы спросить, почему планковский масштаб масс столь огромен, почему он в десять миллионов миллиардов раз больше, чем массы, относящиеся к масштабам физики частиц, которые меньше нескольких сотен ГэВ?

Чтобы дать вам пищу для сравнения, рассмотрим гравитационное притяжение между двумя частицами малой массы, например, между парой электронов. Гравитационное притяжение примерно в сто миллионов триллионов триллионов триллионов раз слабее электрического отталкивания между этими частицами. Два типа сил будут сравнимы, если электроны будут тяжелее в десять миллиардов триллионов раз. Это колоссальное число, оно сравнимо с тем, сколько раз вы сможете приложить остров Манхеттен непрерывной цепочкой на расстоянии, равном размеру видимой Вселенной.

Планковский масштаб масс неизмеримо больше, чем масса электрона и массы всех других известных нам частиц, и это указывает на то, что тяготение намного слабее других известных взаимодействий. Но почему должно быть такое огромное расхождение между интенсивностями большинства взаимодействий, или эквивалентно, почему планковский масштаб масс настолько огромен по сравнению с массами известных частиц?

Для специалистов по физике частиц трудно смириться с огромным отношением планковского масштаба масс к слабому масштабу масс, составляющим величину порядка десяти миллионов миллиардов. Это отношение больше, чем число минут, прошедших с момента Большого взрыва; оно в тысячу раз больше, чем число детских шариков, которые можно выложить от Земли до Солнца. Это число более чем в сто раз больше числа центов в бюджетном дефиците США! Почему же две массы, описывающие одну и ту же физическую систему, должны настолько различаться?

Если вы не специалист по физике частиц, вам может показаться, что все это не слишком существенная проблема, даже если эти числа очень велики. В конце концов, мы не обязаны объяснять все, и две массы могут быть разными без всяких особых причин. Но ситуация на самом деле намного хуже, чем кажется. Речь идет не только о существовании необъясненного огромного отношения масс. В следующем разделе мы увидим, что в рамках квантовой теории поля любая частица, взаимодействующая с хиггсовской частицей, может участвовать в виртуальном процессе, приводящем к росту массы хиггсовской частицы до значения порядка планковского масштаба масс 1019 ГэВ.

На самом деле, если бы вы попросили любого честного физика-частичника, знающего интенсивность гравитации, но ничего не знающего об измеренных массах слабых калибровочных бозонов, оценить массу хиггсовской частицы, используя квантовую теорию поля, он предсказал бы для хиггсовской частицы, и следовательно для слабых калибровочных бозонов, значения масс, в десять миллионов миллиардов раз большие, чем нужно. Иначе говоря, он заключил бы из своих вычислений, что отношение планковского масштаба масс и массы хиггсовской частицы (т. е. масштаба массы слабых взаимодействий, определяемого массой хиггсовской частицы) должно быть намного ближе к единице, чем к десяти миллионам миллиардов! Его оценка слабой шкалы масс была бы настолько близка к планковской шкале масс, что все частицы были бы черными дырами, а физика частиц в том виде, как мы ее знаем, просто не существовала бы. Хотя у него могло не быть априорных ожиданий как для значений масштаба массы слабых взаимодействий, так и планковского масштаба масс по отдельности, он мог бы использовать квантовую теорию поля для оценки отношения масс, и полностью бы ошибся. Ясно, что в этом месте существует огромное противоречие. В следующем разделе мы объясним его причину.

Виртуальные энергичные частицы

Причина, по которой планковский масштаб масс входит в вычисления квантовой теории поля, довольно тонкая. Как мы видели, планковский масштаб масс определяет интенсивность гравитационного взаимодействия. Согласно закону Ньютона, сила гравитации обратно пропорциональна квадрату планковского масштаба масс, и тот факт, что тяготение столь слабо, показывает, что планковский масштаб масс огромен.

В общем случае, делая предсказания в физике частиц, мы можем не учитывать гравитацию, так как ее влиянием на частицу массой порядка 250 ГэВ можно полностью пренебречь. Если действительно требуется принять во внимание гравитационные эффекты, их можно последовательно учесть, но обычно не в этом находится источник беспокойства. В последующих главах будут объяснены новые, совершенно другие сценарии, в которых гравитация сильна в высших измерениях, и ею нельзя пренебречь. Однако в обычной четырехмерной Стандартной модели пренебрежение гравитацией является стандартной и законной процедурой.

Но планковский масштаб масс играет и другую роль — это та максимальная масса, которую может иметь виртуальная частица в достоверных вычислениях в рамках квантовой теории поля. Если масса частиц превышает планковский масштаб, вычисления станут недостоверными, общая теория относительности не будет заслуживать доверия и должна будет быть заменена на более полную теорию, например на теорию струн.

Но если частицы (в том числе виртуальные) имеют массу меньше планковского масштаба, должна быть применима обычная квантовая теория поля, и основанные на ней вычисления должны заслуживать доверия. Это означает, что расчеты, включающие виртуальный топ-кварк (или любую другую виртуальную частицу) с почти такой же большой массой, как планковский масштаб масс, должны быть достоверными.

Проблема иерархии состоит в том, что вклад в массу хиггсовской частицы от виртуальных частиц очень большой массы будет почти таким же большим, как планковский масштаб масс, который в десять миллионов миллиардов раз больше той массы хиггсовской частицы, которую мы хотим, и которая будет давать правильный масштаб массы слабых взаимодействий и правильные массы элементарных частиц.

Если рассмотреть путь типа показанного на рис. 62, в котором хиггсовская частица превращается в пару виртуальных топ-кварка и антитоп-кварка, можно увидеть, что вклад в массу хиггсовской частицы окажется слишком большим. На самом деле любой тип частиц, которые могут взаимодействовать с хиггсовской частицей, может проявиться как виртуальная частица и приобрести массу[123] вплоть до планковского масштаба масс. Результатом учета всех этих возможных путей будут огромные квантовые поправки в массу хиггсовской частицы. Но масса этой частицы должна быть намного меньше.

1 ... 74 75 76 77 78 79 80 81 82 ... 146
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?