Абсолютный минимум. Как квантовая теория объясняет наш мир - Майкл Файер
Шрифт:
Интервал:
Рис. 19.3. В куске металлического натрия имеется N атомов. У каждого атома есть электрон на 3s-орбитали. Все вместе они представлены тесно расположенными линиями в левой части рисунка. Все они обладают одинаковой энергией. N атомных 3s-орбиталей взаимодействуют, образуя N молекулярных орбиталей, энергетические уровни которых показаны справа. Энергетические уровни МО настолько близки друг к другу, что их энергии образуют практически непрерывную зону состояний. Уровень Ферми соответствует самой высокой заполненной орбитали
Итак, есть N атомов натрия, каждый с одним 3s-электроном. Нам требуется поместить эти N электронов на соответствующие МО, как мы это делали с небольшими молекулами в главах 12 и 13 и как показано на рис. 18.8 и 18.9. Делокализованные МО металлического натрия подобны любым другим орбиталям, а значит, они подчиняются трём правилам расселения электронов, которые обсуждались в главе 11: сначала заселяются уровни с наименьшей энергией; на одной орбитали может находиться не более двух электронов, причём они должны иметь спаренные спины (принцип запрета Паули); по возможности спины не спариваются (правило Хунда).
На рис. 19.3 показано расселение электронов. Первый электрон занимает самый нижний энергетический уровень. Следующий электрон заселяется на тот же уровень с противоположным спином, то есть на нём будет одна стрелка вверх и одна стрелка вниз. Три электрона не могут располагаться на низшем энергетическом уровне, поскольку это нарушило бы принцип Паули. Поэтому третий электрон заселяется на уровень, который на один выше самого нижнего. Четвёртый электрон размещается на том же уровне со спаренным спином. Так продолжается до тех пор, пока по молекулярным орбиталям не будут размещены все N электронов.
Имеется N энергетических уровней МО и N электронов. Однако на каждом уровне может находиться два электрона, поэтому заполнена будет только нижняя половина зоны энергетических уровней. Это похоже на бензол (см. рис. 18.8) и нафталин (см. рис. 18.9), у которых тоже заполнена только нижняя половина МО. Энергия самой высокой из заполненных орбиталей называется уровнем Ферми — в честь Энрико Ферми (1901–1954). Ферми как физик работал во многих областях науки, включая теорию твёрдого тела, в частности металлов, и теорию ядерных реакций. Он внёс значительный вклад в развитие ядерной энергетики. В 1938 году он получил Нобелевскую премию по физике
«за доказательство существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами».
Как мы увидим, уровень Ферми чрезвычайно важен.
Уровень Ферми — это наивысшая заполненная МО при абсолютном нуле температуры, то есть при температуре 0 K, где K означает кельвины. 1 K равен 1 °C, однако нуль шкалы Кельвина соответствует абсолютному нулю температур, то есть 0 K — это −273 °C. Мы кратко обсуждали, как тепло в системах молекул, таких как вода, вызывает дрожание молекул. В главе 15 отмечалось, что тепловые движения молекул воды ответственны за разрушение водородных связей между ними. По мере понижения температуры тепла (тепловой энергии) становится всё меньше, и движение атомов и молекул замедляется. Абсолютный нуль (0 K) — это температура, при которой вообще нет тепла, заставляющего атомы и молекулы двигаться. Уровень Ферми определяется именно как энергия наивысшей заполненной МО при 0 K.
Как показано на рис. 19.1, электроны входят в металлический стержень с одной стороны и покидают его с другой. Это возможно, поскольку электроны находятся на делокализованных МО, растянутых на весь кусок металла. Однако квантовая теория показывает, что если все электроны занимают только МО ниже уровня Ферми, то они не будут двигаться в каком-либо определённом направлении. В реальности металлы трёхмерны, но в данном обсуждении мы будем рассматривать только одно измерение за раз. В нашем металлическом стержне даже тогда, когда он не присоединён к батарее, электроны, находящиеся на МО, тем не менее постоянно движутся. Хотя электроны описываются в терминах квантовомеханических волновых функций, они обладают кинетической энергией. Поэтому можно подсчитать скорость электрона. Электроны на некоторых МО можно рассматривать как движущиеся вправо. Имеются соответствующие им МО с точно такой же энергией, но с электронами, движущимися влево. Когда все МО заполнены, как показано на рис. 19.3, электрического тока не будет, поскольку одинаковое число электронов движется влево и вправо. В трёхмерном случае для любого выбранного направления у электрона будет равная вероятность двигаться в этом направлении или в диаметрально противоположном.
Однако когда металлический стержень на рис. 19.1 присоединяется к батарее, всё меняется. Один конец стержня соединён с положительным полюсом батареи, а другой — с отрицательным. Подключение к батарее меняет условия существования электронов. Без батареи электроны ощущают положительные заряды атомов натрия и отрицательные заряды других электронов. Любой отдельный электрон в середине стержня не чувствует разницы между правым и левым. Однако при подключении к батарее появляется дополнительный действующий фактор — созданное ею внутри металла электрическое поле. Электроны притягиваются к положительному концу и отталкиваются от отрицательного конца. В результате система меняется, поскольку некоторые электроны оказываются на уровнях выше уровня Ферми, который был без батареи (см. рис. 19.4). Состояние электронов в системе меняется так, что становится больше электронов, движущихся к положительному концу металлического стержня, чем движущихся к отрицательному.
Рис. 19.4. Схематическое изображение уровней 3s-зоны натрия, представленных на рис. 19.3, с поправкой на воздействие подключения к батарее. В результате некоторые электроны оказываются выше уровня Ферми без батареи, переходя с заполненных МО на пустые. Эти электроны изображены здесь стрелками выше уровня Ферми
Согласно квантовой теории, для наличия электронной проводимости требуется наличие электронов, находящихся выше уровня Ферми. Поскольку энергетический зазор между уровнями исчезающе мал, даже очень низкого напряжения, приложенного к стержню и порождающего ничтожное электрическое поле, достаточно, чтобы некоторые электроны оказались выше уровня Ферми. Результатом становится появление электрического тока в металлическом стержне. Электроны покидают положительный конец стержня и заменяются электронами, входящими со стороны отрицательного конца. При более сильном электрическом поле (более высоком напряжении) над уровнем Ферми, соответствующем нулевому полю, оказывается больше электронов, и электрический ток становится сильнее. Детальная квантовая теория электропроводности металлов говорит, что ток будет возникать под действием приложенного электрического поля даже при нулевой абсолютной температуре. Для того чтобы проводить электричество, металлам не требуется тепло. Ниже мы увидим, что в случае полупроводников это не так, а также что тепло, имеющееся при температуре выше 0 K, на самом деле мешает электрической проводимости в металлах.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!