Большое космическое путешествие - Дж. Ричард Готт
Шрифт:
Интервал:
Эйнштейн искренне верил в свою идею о принципе эквивалентности. Если одновременно бросить легкий и тяжелый шар, то они просто зависнут в свободном падении, но поверхность Земли подскакивает и ударяется о них. Вся беда заключалась в том, что подобное казалось бессмысленным. Как поверхность Земли может повсюду с ускорением двигаться вверх, если Земля при этом не увеличивается? Если бы она раздувалась, как воздушный шарик, то могла бы действительно подскакивать к шарам, которые мы бросаем. Но Земля ни на йоту не увеличивается, поэтому такая идея кажется бессмысленной. Она имела бы право на существование, лишь если бы пространство-время было искривлено и не подчинялось законам евклидовой геометрии.
Давайте поговорим о кривизне. На рис. 19.1 показан глобус. Его поверхность искривлена, и поэтому евклидова планиметрия на ней не работает. Евклид учил, что сумма углов любого треугольника на плоскости равна 180°. Кратчайшая линия между двумя точками, которую можно провести на глобусе, – это дуга большого круга. Большой круг – это круг на глобусе, центр которого совпадает с центром глобуса. Экватор Земли – это большой круг. Любой меридиан – это большой круг. Кратчайшее расстояние между Нью-Йорком и Северным полюсом проходит по меридиану, соединяющему Нью-Йорк и Северный полюс. На глобусе можно построить треугольник, в вершинах которого лежат Северный полюс и две точки на экваторе, причем оба экваториальных угла этого треугольника будут равны 90°. Получится треугольник (состоящий из дуг большого круга), в котором будет три угла по 90°, всего 270°.
Если отправиться с Северного полюса и так и идти, пока не достигнешь экватора, то на экваторе потребуется повернуть на 90°, чтобы взять курс на запад. Затем, достигнув второй точки на экваторе, понадобится вновь повернуть на 90°, чтобы взять курс на север и вернуться на Северный полюс. Прибыв туда, вы увидите, что две стороны треугольника смыкаются на Северном полюсе опять же под углом 90°, поскольку это два меридиана, разделенные на 90°. Вы прошли по треугольнику с тремя прямыми углами, который невозможен по законам евклидовой планиметрии. Поверхность сферы искривлена, поэтому устроена иначе, нежели евклидова планиметрия.
Допустим, мы начертили на глобусе круг, центр которого совпадает с Северным полюсом. Пусть радиус круга, измеренный по поверхности глобуса, равен расстоянию от полюса до экватора (это 1/4 окружности Земли). Окружность такого круга, центр которого совпадает с Северным полюсом, – это экватор. Длина экватора равна длине окружности Земли, поэтому радиус круга, который вы начертите, должен быть равен 1/4 окружности Земли. Следовательно, в данном случае окружность круга вчетверо больше радиуса, то есть превышает радиус не в 2π раз, как положено в евклидовой геометрии, а меньше. Опять же оказывается, что искривленная поверхность сферы не подчиняется законам евклидовой планиметрии.
Рис. 19.1. Треугольник с тремя прямыми углами, построенный на сфере. Снимок предоставлен Дж. Ричардом Готтом
Эйнштейн представлял себе вращающуюся пластинку для фонографа. Если бы на пластинке стоял муравей, то ему пришлось бы крепко упираться лапками, чтобы не упасть. Понадобилось бы производить центростремительное ускорение (то есть крепко держаться), и при этом ощущалась бы «гравитационная» сила, которая тянет муравья к краю пластинки. На некоторых аттракционах можно испытать подобный эффект: кабина расположена в своеобразной емкости, напоминающей вращающуюся консервную банку, и в ней вы ощущаете силу g, толкающую вас на стенки цилиндра. Там можно даже ноги от пола оторвать. В обоих случаях: вращающаяся пластинка фонографа и вращающаяся кабина на аттракционе – ускоряющееся круговое движение имитирует гравитацию, точно как на ускоряющемся космическом корабле. Предполагается, что пластинка фонографа плоская. Но Эйнштейн знал: поскольку край пластинки стремительно движется, два наблюдателя (один сидит в центре пластинки, а другой на краю), попытавшись измерить одинаковые линейки, лежащие на пластинке, получат разные результаты. Длина окружности вращающейся пластинки, измеренная сидящими на этой пластинке наблюдателями, не будет равна 2πr (но именно такова длина окружности в евклидовой планиметрии). Эйнштейн пришел к выводу, что вращающаяся пластинка фонографа обладает неевклидовой геометрией (имеет кривизну) именно потому, что вращается, и в таком случае на ней имитируется гравитация. Если такая смоделированная гравитация – не что иное, какгравитация (по принципу эквивалентности Эйнштейна), то кривизна пространства-времени сама по себе может порождать гравитацию.
Если я нахожусь в Нью-Йорке и хочу отправиться в Токио, то мой путь должен пролегать по дуге большого круга – кратчайшему возможному маршруту. Между двумя этими городами на глобусе можно даже натянуть струну. Дуга большого круга пройдет через север Аляски (рис. 19.2). Найдите глобус и попробуйте сами. Именно по такой траектории полетит самолет. Кроме того, это кратчайший возможный путь между двумя городами. Чтобы в этом убедиться, возьмите игрушечный грузовичок и прокатите его по глобусу от Нью-Йорка до Токио. Колеса у такой машинки катятся прямо вперед; если вы правильно нацелите его на Токио, то можете просто ехать по дуге большого круга, никуда не сворачивая, миновать Северную Аляску и прибыть на место назначения. Такой кратчайший возможный путь называется геодезической линией. Отправьте грузовичок по экватору в западном направлении, никуда не сворачивайте – и объедете весь экватор. Если поехать в любом направлении и ехать только прямо, не притрагиваясь к рулю, то ваш путь будет пролегать по геодезической линии. Взгляните на плоскую карту Земли в проекции Меркатора: геодезическая линия, связывающая Нью-Йорк и Токио (часть дуги большого круга), кажется искривленной. Поскольку оба города находятся примерно на сороковой параллели, по карте Меркатора может показаться, что кратчайший путь из Нью-Йорка в Токио пролегает по этой параллели. Но на самом деле этот путь длиннее. Он к тому же не прямой. Эта широта образует на глобусе малый круг; ее окружность меньше, чем у экватора, а центр этой окружности (расположенный внутри земного шара) лежит к северу от центра Земли. Это не большой круг. Граница между США и Канадой к западу от Великих озер – часть такого малого круга. Если бы вы ехали на грузовике вдоль этой границы с запада на восток, то вам пришлось бы постоянно немного подруливать влево, чтобы не сбиваться с маршрута. На плоской карте Земли (смотря в какой координатной системе она составлена) прямая геодезическая линия может казаться искривленной.
Рис. 19.2. На глобусе показана дуга большого круга, соединяющая Нью-Йорк и Токио. Снимок предоставлен Дж. Ричардом Готтом
Бросьте баскетбольный мяч в корзину – и он опишет дугу, а потом попадет в корзину. Да, очевидно, он летит по кривой линии (параболе). Может показаться, что траектория мяча изогнута на пару метров. Она изогнута точно так же, как и путь из Нью-Йорка в Токио на карте в проекции Меркатора. Идея Эйнштейна заключалась в том, что объекты в состоянии свободного падения будут, подобно баскетбольному мячу, двигаться по геодезическим линиям в искривленном пространстве-времени, по кратчайшим из возможных траекторий (если только на них не действуют другие силы, например электромагнитная). Считалось, что курс для частицы задать просто: «лети прямо». В физике частиц не суммируются совокупности сил, возникающих под действием различных масс, как предположил бы Ньютон. Любая частица попросту летит прямо. Пространство-время искривлено, и из-за этой кривизны возникает гравитация. Вспомните пространственно-временную схему с рис. 18.1, где мировая линия Солнца изображена в виде вертикальной полосы, а мировая линия Земли – в виде спирали, закрученной вдоль этой полосы. На самом деле это очень продолговатая спираль. Ее ширина – восемь световых минут, а расстояние между соседними оборотами равно одному световому году. Эйнштейн предположил, что солнечная масса слегка искривляет окружающее пространство-время, так что спиралевидная мировая линия Земли фактически повторяет кратчайшую возможную траекторию через пространство-время, как грузовик, который едет прямо в Токио. Мировая линия Земли может казаться искривленной в той координатной системе, что дана на рис. 18.1, но на самом деле Земля летит по кратчайшей возможной геодезической линии в искривленном пространстве-времени. Если знать, какова эта кривизна, то можно вычислить геодезическую линию, описываемую Землей вокруг Солнца.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!