История всего. 14 миллиардов лет космической эволюции - Дональд Голдсмит
Шрифт:
Интервал:
Хотя физики считают, что атомы водорода и антиводорода должны вести себя одинаково, им пока не удалось подтвердить или опровергнуть это утверждение в экспериментальных условиях. Это связано в первую очередь с проблемой сохранения атомов антиводорода собственно в виде атомов — ведь они почти сразу же аннигилируют при контакте с протонами и электронами. Ученые хотели бы удостовериться, что поведение позитрона, связанного с антипротоном в атоме антиводорода, досконально следует всем законам квантовой теории и что сила тяготения антиатома работает точно так же, как и у обычных атомов. Может ли антиатом порождать антигравитацию — отталкивающую силу — вместо обычной гравитации — силы притяжения? Вся теория указывает на то, что этот сценарий невозможен, но вдруг это не так? Если мы найдем антигравитацию в антиатомах, это станет источником новых удивительных открытий и знаний об устройстве окружающего мира. В масштабе отдельных атомов величина гравитации между двумя отдельными частицами ничтожно мала. Не гравитация, но электромагнитное и ядерное взаимодействия определяют поведение этих крохотных частиц, каждое из них в разы мощнее гравитации. Чтобы проверить возможность существования антигравитации, понадобится достаточное количество антиатомов того, чтобы собрать из них объекты обычного размера — такие, чтобы их свойства можно было доступно и достоверно оценить и измерить, а затем сравнить со свойствами привычного нам вещества. Если сделать набор бильярдных шаров (стол и кии) из антивещества, будет ли игра в антибильярд неотличима от игры в бильярд? Будет ли антишар с нарисованной на нем антивосьмеркой падать в угловую лузу точно так же, как и обычный шар с восьмеркой? Вращаются ли антипланеты вокруг своих антизвезд так же, как и обычные планеты вокруг обычных звезд?.
Предположение, что суммарные свойства антивещества окажутся равнозначными свойствам обычного вещества, демонстрируя привычную силу тяготения, привычные столкновения, свет и т. д., — разумно с философской точки зрения и не идет вразрез со всеми прогнозами и предписаниями современной физики. К сожалению, это означает, что, если бы в нашу сторону двигалась некая антигалактика, столкновение которой с Млечным Путем было бы неизбежным, мы не имели бы никакой возможности различить ее заранее, а потом уже было бы слишком поздно что-то предпринимать. Правда, столь плачевная судьба не может быть регулярным явлением в сегодняшней Вселенной: если бы, например, одна антизвезда аннигилировала с одной обычной звездой, превращение их вещества и антивещества в энергию гамма-излучения было бы мгновенным, яростным и тотальным. Если бы две звезды массой примерно с наше Солнце (в каждой из них тогда было бы 1057 частиц) столкнулись в нашей галактике, их аннигиляция создала бы такой яркий источник света, что он временно превысил бы по силе всю энергию всех звезд сотни миллионов галактик и сжарил бы нас в мгновение ока. У нас нет никаких убедительных доказательств того, что нечто подобное хоть раз произошло где-либо в нашей Вселенной. По этой причине, насколько мы можем судить, во Вселенной все же преобладает обычное вещество, более того, так оно и было с первых же минут ее существования после Большого взрыва. Так что не беспокойтесь: когда вы в следующий раз отправитесь в межгалактическое путешествие, мгновенную и немучительную смерть от тотальной аннигиляции из-за столкновения большой массы вещества и антивещества можно смело вычеркнуть из списка первоосновных вопросов безопасности.
Однако теперь получается, что Вселенная пребывает в пугающем неравновесии. Мы предполагаем, что частицы и античастицы должны создаваться в равном количестве, но во все стороны от нас простирается космос, где вещества существенно больше и ему нисколько не мешает недостаток антивещества. Может, где-то есть тайные космические пазухи, в которых прячется все антивещество, которого мы недосчитались? Может, какие-то законы физики были нарушены в первые мгновения существования Вселенной тогда всем руководил какой-то неизвестный нам сегодня закон), из-за чего было навсегда нарушено равновесие между веществом и антивеществом? Мы можем никогда не узнать ответов на эти вопросы, но пока все же хотим дать вам один хороший совет: если над лужайкой у вашего дома в воздухе повиснет инопланетянин и протянет вам щупальце в знак приветствия, не торопитесь протягивать руку в ответ: сперва киньте ему свой любимый бильярдный шар-восьмерку. Если щупальце и шар взорвутся, инопланетянин, скорее всего, состоит из антивещества. (Не будем останавливаться здесь на том, как он сам и его приятели отреагируют на взрыв, на том, что будет с вами в результате такого взрыва.) Если же ничего плохого не случится, берите своего нового друга за космическую лапу и ведите его к лидеру всего человечества.
Когда нашей Вселенной была всего доля секунды от роду, а температура ее составляла безжалостные миллиарды градусов тепла и сияние от нее было просто нестерпимым, занималась она в основном расширением. С каждым последующим мгновением Вселенная становилась все шире, охватывая все больше космического пространства (что не очень просто вообразить, но факты говорят сами за себя). Чем дальше расширялась Вселенная, тем прохладнее и темнее она становилась. На протяжении сотни тысячелетий вещество и энергия сосуществовали бок о бок в чем-то вроде густого бульона, в котором электроны стремительно и без устали разносили по уголкам Вселенной фотоны.
Если бы тогда вам захотелось заглянуть «в глубь» Вселенной, вы бы ничего не увидели. Те фотоны, что пытались бы добраться до сетчатки вашего глаза, за несколько наносекунд или даже пикосекунд до достижения цели отскакивали бы от электронов, мельтешащих перед вашим лицом, в обратном направлении. Куда бы вы ни посмотрели, вы увидели бы только мерцающий туман, и все окружающие вас предметы — сияющие, пронизанные светом, красновато-белые — были бы почти такими же яркими, как поверхность Солнца.
Расширение Вселенной продолжалось, и энергия фотонов постепенно падала. В конце концов, когда Вселенной исполнилось около 380 тысяч лет, ее температура упала ниже 3000 градусов по шкале Кельвина. Тогда протоны и ядра гелия смогли окончательно притянуть к себе электроны, создав, таким образом, первые атомы в нашей Вселенной. В предыдущие эпохи ее существования каждому фотону хватало энергии на то, чтобы разрушать формирующиеся атомы, но расширение Вселенной положило этому конец. Свободных электронов тоже становилось все меньше, и теперь фотоны могли носиться по всей Вселенной, ни с чем не сталкиваясь. Тогда-то Вселенная и стала прозрачной: туман рассеялся, и гипотетическому наблюдателю открылось фоновое космическое излучение.
Это излучение можно наблюдать и сегодня — мы называем его реликтовым излучением. По сути, оно представляет собой остатки света той сверкающей раскаленной Вселенной первых лет ее существования. Свойства этой вездесущей массы фотонов во многом соответствуют как волнам, так и частицам. Длина волны каждого фотона равняется расстоянию между двумя соседними «гребнями» его волнообразной траектории — его можно было бы измерить обычной линейкой, если бы довелось заполучить в руки фотон. В вакууме все фотоны движутся с одинаковой скоростью — около 299 800 км/с[10] (собственно, это и есть скорость света), так что фотоны с меньшей длиной волны характеризуются большим количеством волнообразных движений, совершаемых за одну секунду. Такие фотоны успевают совершить больше волнообразных движений за заданный промежуток времени, а значит, отличаются большей частотой. Частота каждого фотона — прямой показатель его «энергичности»: чем она выше, тем больше в нем содержится энергии.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!