Вечность. В поисках окончательной теории времени - Шон Кэрролл
Шрифт:
Интервал:
Вы можете задаваться вопросом: а откуда мы знаем, что написанное выше — правда? В конце концов, какая разница между «существует 75-процентная вероятность увидеть кошку под столом» и «существует 75-процентная вероятность того, что кошка находится под столом». Трудно вообразить эксперимент, который мог бы провести различие между этими вероятностями; в конце концов, единственный способ узнать, где кошка, — посмотреть в ее любимых местах. Однако существует критически важное явление, благодаря которому суть различия становится очевидной. Это квантовая интерференция. Чтобы понять, что это значит, придется запастись терпением и углубиться в детали того, как в действительности работают волновые функции.
В классической механике, где для описания состояния частицы указывают ее положение и импульс, об этом состоянии можно думать как о наборе чисел. Для одной частицы в обычном трехмерном пространстве необходимо указать шесть чисел: положение в каждом из трех направлений и импульс в каждом из трех направлений. В квантовой механике состояние описывается волновой функцией, которую также можно представлять себе как набор чисел. Задача этих чисел — сообщать нам для любого наблюдения или измерения, которое нам только вздумается выполнить, какова вероятность того, что мы получим определенный результат. Таким образом, казалось бы, совершенно естественно полагать, что необходимые нам числа — это самые обыкновенные вероятности: вероятность того, что мы увидим Китти на диване, вероятность того, что мы увидим Китти под столом, и т. д.
Выясняется, однако, что это работает совсем не так. Волновые функции на самом деле схожи с волнами: типичная волновая функция колеблется в пространстве и времени подобно волне на поверхности пруда. Это не совсем очевидно в нашем простом примере, предусматривающем только два возможных результата наблюдений: «на диване» и «под столом». Но если рассмотреть наблюдения с непрерывным множеством возможных исходов, например наблюдение за положением реальной кошки в реальной комнате, то многое сразу же прояснится. Волновая функция похожа на волну на поверхности пруда; единственная разница в том, что это волна в пространстве всех возможных результатов наблюдения: например, всех возможных положений в комнате.
Когда мы видим реальную волну, то замечаем, что относительно поверхности пруда в спокойном состоянии высота воды в волне в разных местах разная. Где-то она выше уровня спокойной воды, а где-то она опускается ниже. Для того чтобы описать волну математически, мы могли бы с каждой точкой пруда связать амплитуду — уровень воды относительно поверхности непотревоженной водной глади. В одних местах амплитуда будет положительной, в других — отрицательной. Волновые функции в квантовой механике работают точно так же. С каждым возможным результатом наблюдения волновая функция связывает число, которое мы называем амплитудой и которое может быть положительным или отрицательным. Полная волновая функция состоит из определенной амплитуды для каждого возможного результата наблюдения; это и есть числа, описывающие состояние в квантовой механике аналогично положениям и импульсам, которые описывают состояние в классической механике. Существует амплитуда, соответствующая пребыванию Китти под столом, и еще одна амплитуда, соответствующая нахождению ее на диване.
При таких условиях у нас остается только одна нерешенная проблема: мы говорим о вероятностях, а вероятность наступления какого-то события никогда не может быть отрицательным числом. Таким образом, нельзя утверждать, что амплитуда, связанная с определенным результатом наблюдения, дает вероятность наступления этого результата; вместо этого должен существовать способ вычисления вероятности, основанный на известном значении амплитуды. К счастью, расчет очень прост! Для того чтобы получить вероятность, нужно взять амплитуду и возвести ее в квадрат:
(вероятность увидеть X) = (амплитуда, связанная с X)2
Таким образом, если волновая функция Китти связывает амплитуду 0,5 с возможностью увидеть кошку на диване, вероятность на самом деле увидеть ее там равняется (0,5)2 = 0,25, или 25 %. Принципиально важно то, что значение амплитуды могло бы быть отрицательным, то есть –0,5, и мы все равно получили бы тот же самый ответ: (–0,5)2 = 0,25. Это может казаться бессмысленным излишеством — две разные амплитуды соответствуют одной и той же физической ситуации, однако выясняется, что наличие положительных и отрицательных значений играет ключевую роль в эволюции состояний в квантовой механике.[202]
Теперь, когда нам известно, что волновые функции могут связывать отрицательные амплитуды с возможными результатами наблюдений, можно вернуться к вопросу, почему мы вообще заговорили о волновых функциях и суперпозициях, вместо того чтобы просто приписать вероятности разным исходам. Причина кроется в интерференции, и эти отрицательные значения необходимы для того, чтобы разобраться, откуда она берется. Мы можем сложить две (отличные от нуля) амплитуды и получить нуль, что было бы невозможно, если бы амплитуды никогда не принимали отрицательные значения.
Для того чтобы понять, как это работает, давайте немного усложним нашу модель кошачьей динамики. Представьте себе, что мы видим, как Китти выходит из спальни на втором этаже. Благодаря нашим предыдущим наблюдениям за ее перемещениями по дому мы собрали достаточно много сведений о том, как действует эта квантовая кошка. Мы знаем, что, стоит ей спуститься на первый этаж, она неминуемо окажется либо на диване, либо под столом и нигде больше (то есть ее конечное состояние представляет собой волновую функцию, описывающую суперпозицию пребывания на диване и пребывания под столом). Однако предположим также, что нам известно о существовании двух возможных путей, ведущих от кровати на втором этаже до одного из мест отдыха на первом этаже: Китти сделает остановку либо у миски с кормом, чтобы подкрепиться, либо у когтеточки, чтобы поточить когти. В реальном мире для описания всех этих возможностей достаточно классической механики, но в нашем идеализированном мире мысленного эксперимента мы считаем, что квантовые эффекты играют важную роль.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!