Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк
Шрифт:
Интервал:
Ошибочное представление о времени
Допустим, что наша Вселенная действительно является разновидностью вычисления. В литературе, посвящённой симуляции Вселенной, распространено недоразумение, предполагающее, что наше физическое представление об одномерном времени обязательно должно приравниваться к одномерной последовательности пошаговых вычислений. Ниже я докажу, что если ГМВ верна, то вычисления не обязательно реализуют эволюцию нашей Вселенной, а скорее описывают её (определяя все соответствующие отношения).
Соблазн приравнять временные шаги к вычислительным вполне понятен: и те, и другие образуют одномерную последовательность, в которой (по крайней мере, в неквантовом случае) следующий шаг определяется текущим состоянием. Однако этот соблазн проистекает из устаревшего классического описания физики. В теории относительности Эйнштейна в общем случае нет естественной и корректно определённой глобальной временной переменной, а в квантовой гравитации всё ещё хуже — там время появляется только как приближённое свойство конкретной подсистемы, рассматриваемой в качестве часов. В действительности соотнесение времени «с точки зрения лягушки» с компьютерным временем ненадёжно даже в контексте классической физики. Темп течения времени воспринимается наблюдателем в симулированной вселенной совершенно независимо от темпа, в котором компьютер выполняет моделирование, что подчёркивается в научно-фантастическом романе Грега Игана «Город перестановок». Более того, напоминал Эйнштейн, нашу Вселенную, по-видимому, естественнее рассматривать не с «лягушачьей» точки зрения, то есть как трёхмерное пространство, в котором происходят события, а с «птичьей», как четырёхмерное пространство-время, которое просто существует. Поэтому для вычисления всего существующего нет необходимости в компьютере — всё может просто храниться в виде четырёхмерных данных, кодирующих все свойства математической структуры, которая является нашей Вселенной. Тогда отдельные временные срезы при желании можно считывать последовательно и симулированный мир должен казаться его обитателям реальным, как в случае, когда хранятся лишь трёхмерные данные, которые эволюционируют. Итак, роль моделирующего компьютера заключается не в том, чтобы вычислить историю нашей Вселенной, а в том, чтобы специфицировать Вселенную.
Как её специфицировать? Способ хранения данных (тип компьютера, формат данных и т. д.) должен быть несущественен, так что степень, в которой обитатели симулированной вселенной воспринимают себя реальными, должна быть независима от метода, применяемого для сжатия данных. Физические законы, которые мы открыли, являются великолепным способом сжатия данных: они делают достаточным хранение начальных данных на некоторый момент времени, а также уравнений и программ вычисления будущего по этим начальным данным. Выше я объяснял, что начальные данные могут быть чрезвычайно простыми: популярные начальные состояния в квантовой теории поля с такими пугающими названиями, как волновая функция Хартли — Хокинга или инфляционный вакуум Банча — Дэвиса, обладают очень низкой алгоритмической сложностью. Их можно определить в коротких физических статьях, однако моделирование их эволюции во времени породило бы симуляцию не одной вселенной вроде нашей, а огромной декогерирующей совокупности параллельных вселенных. Поэтому весьма правдоподобно, что наша Вселенная (и даже весь мультиверс III уровня) может быть смоделирована очень короткой компьютерной программой.
Типы вычислений
Предыдущий пример отсылает нас к нашей конкретной математической структуре с её квантовой механикой и всем прочим. В более общем виде, как уже говорилось, полное описание произвольной математической структуры является по определению заданием отношений между её элементами. Ранее в этой главе мы видели, что для корректной определённости этих отношений все функции должны быть вычислимыми: должна существовать компьютерная программа, которая рассчитывает отношения за конечное число шагов. Каждое отношение в математической структуре, таким образом, определяется вычислением. Иными словами, если наш мир — корректно определённая математическая структура в данном смысле, то он действительно неразрывно связан с вычислениями, хотя и с вычислениями иного типа, нежели обычно ассоциирующимися с гипотезой симуляции. Эти вычисления не вызывают развития нашей Вселенной, а описывают её, определяя её отношения.[87]
Действительно ли симуляция должна выполняться?
Более глубокое понимание отношений между математическими структурами, формальными системами и вычислениями (треугольник на рис. 12.6) проливает свет на многие трудные вопросы. Один из них — проблема меры, которая досаждала нам в предыдущей главе и которая, по сути, является вопросом, как обращаться с мешающими бесконечностями и предсказывать вероятности того, что мы должны наблюдать. Так, поскольку любая симуляция Вселенной соответствует математической структуре, а значит, уже существует в мультиверсе IV уровня, можно ли в некоем разумном смысле говорить, что она в большей степени существует, если вдобавок запущена на компьютере? Этот вопрос ещё усложняется тем, что вечная инфляция предсказывает бесконечное пространство с бесконечным числом планет, цивилизаций и компьютеров, среди которых могут быть такие, где запущены симуляции, а также с учётом того, что и мультиверс IV уровня включает в себя бесконечное число математических структур (их можно интерпретировать как компьютерные симуляции).
Тот факт, что наша Вселенная (вместе со всем мультиверсом III уровня) может быть смоделирована очень короткой компьютерной программой, вызывает вопрос: создаётся ли некоторое онтологическое различие тем, «запущено» это моделирование или нет? Если, как мы сказали, компьютер нужен лишь для описания, а не для вычисления истории, то полное описание, вероятно, уместилось бы на одной флешке и не потребовало бы процессорной мощности. Кажется абсурдом, что существование этой флешки могло бы как-либо влиять на то, существует ли описываемый ею мультиверс «в действительности». Даже если существование этой флешки имеет значение, некоторые элементы данного мультиверса будут содержать точно такие же флешки и тем самым «рекурсивно» поддерживать собственное физическое существование. Тут нет никакой «уловки-22» или проблемы курицы и яйца (что появилось сначала, флешка или мультиверс?): элементы мультиверса — это четырёхмерные пространства-времена, тогда как «созидание» — это, конечно, понятие, имеющее смысл лишь внутри пространства-времени.
Смоделированы ли мы? Согласно ГМВ, наша физическая реальность является математической структурой, а раз так, она существует независимо от того, есть ли здесь или где-нибудь ещё в мультиверсе IV уровня некто, создавший программу для её моделирования (описания). Тогда единственный остающийся вопрос — может ли компьютерная симуляция сделать нашу математическую структуру в каком-либо разумном смысле более существующей, чем она уже есть. Если мы решим проблему меры, то, вероятно, обнаружим, что моделирование математической структуры немного увеличило бы её меру — на некоторую долю меры той математической структуры, внутри которой она смоделирована. Я предполагаю, однако, что это даст в лучшем случае едва заметный эффект, так что в вопросе, смоделированы ли мы, я бы сделал ставку на ответ «нет».
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!