Закрученные пассажи. Проникая в тайны скрытых размерностей пространства - Лиза Рэндалл
Шрифт:
Интервал:
Частицы Калуцы — Клейна есть проявление в четырех измерениях частицы из пространства с дополнительными измерениями. Аналогично тому, как любой звук, издаваемый скрипичной струной, можно представить как суперпозицию многих резонансных мод, поведение частицы из пространства с дополнительными измерениями можно воспроизвести, заменив ее подходящими частицами КК. Эти частицы полностью характеризуют многомерные частицы и геометрию многомерного пространства дополнительных измерений, в котором они перемещаются.
Чтобы воспроизвести поведение многомерных частиц, частицы КК должны нести экстра-импульс из дополнительных измерений. Каждая частица, которая перемещается в многомерном пространстве с дополнительными измерениями, может быть заменена в нашем эффективном четырехмерном описании частицами КК, имеющими правильные импульсы и взаимодействия, симулирующие рассматриваемую частицу из пространства с дополнительными измерениями. Вселенная с дополнительными измерениями принимает как знакомые частицы, так и их КК-родственников, имеющих экстрамерные импульсы в дополнительных измерениях, которые определяются детальными свойствами свернутого пространства.
Однако четырехмерное описание не содержит информации о положении или импульсе в дополнительных измерениях. Поэтому, когда мы рассматриваем экстра-мерный импульс частиц КК с точки зрения нашего четырехмерного пространства, его надо назвать как-то иначе. Связь между массой и импульсом, налагаемая специальной теорией относительности, показывает, что импульс в пространстве с дополнительными измерениями будет проявляться в четырехмерном мире как масса. Поэтому частицы КК похожи на известные нам обычные частицы, но с массами, отражающими наличие у них экстра-импульсов в дополнительных измерениях.
Массы частиц КК определяются геометрией пространства с дополнительными измерениями. Однако их заряды такие же, как у известных четырехмерных частиц. Это следует из того, что если известные частицы происходят из пространства с дополнительными измерениями, то и многомерные частицы должны нести те же заряды, что и известные частицы. Это верно и для частиц КК, симулирующих поведение многомерных частиц. Так, для каждой частицы должно быть много частиц КК с тем же зарядом, но разными массами. Например, если электрон перемещается в пространстве с дополнительными измерениями, у него будут КК-партнеры с тем же отрицательным зарядом. И если кварк перемещается в пространстве с дополнительными измерениями, у него появятся КК-родственники, которые, как и кварк, будут испытывать сильное взаимодействие. КК-партнеры имеют такие же заряды, как известные нам частицы, но массы КК-партнеров определяются дополнительными измерениями.
Определение масс частиц Калуцы — Клейна
Чтобы понять происхождение и массы частиц КК, требуется выйти за пределы интуитивной картины невидимых свернутых измерений, которую мы рассматривали ранее. Для простоты, рассмотрим сначала вселенную без бран, в которой каждая частица в основе многомерна и может перемещаться по всем направлениям, включая дополнительные. Рассмотрим конкретный пример пространства только с одним дополнительным измерением, свернутым в окружность, где элементарные частицы перемещаются внутри этого пространства. Если бы мы жили в мире, где правила бы классическая ньютоновская физика, частицы Калуцы— Клейна могли бы иметь любые значения импульса в дополнительных измерениях, и поэтому любые массы. Но так как мы живем в квантово-механической вселенной, дело обстоит иначе. Квантовая механика утверждает, что аналогично звукам скрипичных струн, в которые дают вклад только резонансные моды, только квантованные экстра-импульсы в дополнительных измерениях дают вклад, когда частицы КК воспроизводят движение и взаимодействия многомерной частицы. И точно так же, как звуки скрипичной струны зависят от ее длины, квантованные экстра-импульсы в дополнительных измерениях частиц КК зависят от размеров и формы этих дополнительных измерений.
Экстра-импульсы в дополнительных измерениях, которые несут частицы КК, проявляются в нашем четырехмерным мире как определенный набор масс частиц КК. Если физики обнаружат частицы КК, их массы расскажут нам о геометрии пространств с дополнительными измерениями. Например, если существует одно дополнительное измерение, свернутое в окружность, эти массы сообщат нам о размере дополнительного измерения.
Процедура поиска разрешенных импульсов (а следовательно, масс) для частиц КК во Вселенной со свернутым измерением очень похожа на метод, который используется для того, чтобы математически определить резонансные моды скрипки, а также на метод, использованный Бором для определения квантованных орбит электронов в атоме. Квантовая механика связывает все частицы с волнами, причем оказываются разрешенными только те волны, колебания которых укладываются целое число раз на окружности дополнительного измерения. Мы определяем разрешенные волны, а затем используем квантовую механику, чтобы связать длину волны с импульсом. Импульсы в дополнительных измерениях определяют разрешенные массы частиц КК, что мы и хотели узнать.
Всегда разрешена также постоянная волна — та, которая совсем не колеблется. Эта «волна» похожа на поверхность идеально спокойного пруда, без видимой ряби, или на скрипичную струну, которую еще не дернули. Такая волна вероятности имеет одно и то же значение везде в дополнительных измерениях. Из-за постоянного значения этой плоской волны вероятности связанная с ней частица КК не отдает предпочтения никакому конкретному положению в пространстве дополнительных измерений. Согласно квантовой механике, эта частица не несет никакого импульса в пространстве дополнительных измерений и, согласно специальной теории относительности, не имеет дополнительной массы.
Таким образом, легчайшая частица КК — это та, которая связана с постоянным значением вероятности в дополнительном измерении. При низких энергиях это единственная частица КК, которая может родиться. Так как у нее нет ни импульса, ни структуры в дополнительном измерении, она неотличима от обычной четырехмерной частицы с теми же массой и зарядом. Имея низкую энергию, частица из пространства с дополнительными измерениями не способна навиваться на компактное свернутое измерение. Иными словами, при низких энергиях невозможно произвести ни одной из дополнительных частиц КК, которые отличают нашу Вселенную от вселенной с большим числом измерений. Низкоэнергетические процессы и легчайшие частицы КК ничего не сообщат нам о существовании дополнительных измерений, независимо от их размеров или формы.
Однако, если вселенная содержит дополнительные измерения, и ускорители частиц достигнут достаточно больших энергий, они смогут создать более тяжелые частицы КК. Эти более тяжелые частицы КК, переносящие ненулевой импульс в дополнительных измерениях, станут первым реальным свидетельством дополнительных измерений. В нашем примере более тяжелые частицы КК связаны с волнами, обладающими структурой вдоль свернутого в окружность дополнительного измерения; волны колеблются, накручиваясь вокруг свернутого измерения и совершая колебания вверх и вниз целое число раз.
Легчайшей из таких частиц КК будет та, у которой функция вероятности имеет наибольшую длину волны. А наибольшая длина волны, для которой колебания укладываются вдоль окружности, будет у той волны, которая колеблется вверх и вниз ровно один раз, пока волна накручивается на свернутое измерение. Такая длина волны определяется размером окружности в дополнительном измерении. Большие длины волны не уместятся, волна будет рассогласована, вернувшись в ту же точку на окружности. Частица с такой волной вероятности есть легчайшая частица КК, которая «помнит» свое происхождение от дополнительных размерностей.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!