Стратегии решения математических задач. Различные подходы к типовым задачам - Альфред Позаментье
Шрифт:
Интервал:
a) 819;
b) 7197.
(Понятно, что это нужно сделать, не прибегая к помощи калькулятора или компьютера.)
Некоторые пытаются решить эту задачу путем возведения 8 в степень с помощью калькулятора и очень быстро выясняют, что большинство калькуляторов не позволяет воспроизвести ответ такой величины. Количество разрядов на дисплее заканчивается раньше, чем на него будет выведено целевое значение.
Нам необходимо найти другой подход к решению этой задачи. Попробуем возводить 8 в последовательно увеличивающуюся степень и посмотрим, нет ли какой полезной закономерности в появлении последних цифр.
Обратите внимание на проявившуюся закономерность — цифра в разряде единиц повторяется при увеличении степени с шагом, равным четырем. По всей видимости, мы можем использовать эту закономерность при решении нашей задачи. Интересующая нас степень равна 19. При делении на 4 она дает остаток 3. Таким образом, последняя цифра числа 819 должна быть такой же, как и у 815, 811, 87 и 83, т. е. 2.
Для скептиков приведем фактическое значение 819 = 144 115 188 075 855 872.
Аналогичным образом проанализируем значения, получаемые при возведении 7 в последовательно увеличивающуюся степень, и попробуем отыскать закономерность.
В соответствии с этой закономерностью при делении показателя 197 на 4 мы получаем остаток, равный 1. Это означает, что последняя цифра числа 7197 должна быть такой же, как и у 71, т. е. 7. При наличии времени вы можете возвести 7 в степень 197 и проверить этот ответ. У вас должно получиться:
Чтобы составить квадрат 1 × 1, требуется 4 зубочистки, как показано на рис. 2.3.
Чтобы составить квадрат 2 × 2, требуется 12 зубочисток (рис. 2.4).
Сколько потребуется зубочисток, чтобы составить квадрат 7 × 7?
Вы можете нарисовать квадрат 7 × 7 и просто подсчитать необходимое количество зубочисток. Такой подход вполне работоспособен, однако он громоздок и требует аккуратного построения чертежа.
Для начала попробуем построить несколько небольших квадратов и посмотрим, удастся ли нам выявить какую-либо закономерность. Нарисуем квадраты 3 × 3 и 4 × 4 (рис. 2.5 и 2.6).
Посмотрим теперь, что у нас получается.
Ну вот! При увеличении размера квадрата на 1 число необходимых зубочисток возрастает на 4. Продолжим таблицу:
Таблица показывает, что числа в третьей колонке последовательно возрастают на 4. Количество зубочисток можно определить в обратном порядке, зная результат из третьей колонки. Для создания квадрата 7 × 7 необходимо 112 зубочисток.
Само название этой стратегии приводит в замешательство большинство людей. Такой подход совершенно неестественен. Когда мы ходили в школу, нас учили решать математические задачи в прямом порядке. Как бы то ни было, многие задачи в реальной жизни решаются именно от обратного. В качестве простого примера предположим, что вам нужно забрать ребенка с тренировки точно в 17:00. Во сколько нужно выйти из дома? Допустим, чтобы добраться до стадиона, нужно 30 минут. По-хорошему, к этому следует добавить запас 5 минут. Значит, выйти нужно за 35 минут, или не позднее 16:25. Даже не задумываясь об этом, мы использовали действие от обратного! Конечно, это сильно упрощенный пример применения данной стратегии.
Чтобы лучше понять такой тип мышления, рассмотрим еще один пример. Допустим, произошла автомобильная авария. Полиции приходится действовать от обратного, чтобы восстановить сцену произошедшего. Кто в кого врезался? Какой автомобиль занесло? Как далеко тянутся следы шин на асфальте? У кого было преимущество в проезде? Это всего лишь один из множества примеров действия от обратного.
В случае применения подхода от обратного мы обычно начинаем с конца задачи, или с «ответа». От этой точки восстанавливаются необходимые действия. Так, если в задаче говорится «увеличилось на 2», мы «уменьшаем на 2», или вычитаем 2. Как-никак, если мы увеличили что-то на 2, то для возврата к предыдущему этапу нужно уменьшить это на 2. Аналогичным образом, если говорится об умножении на 3, то в случае действия от обратного, необходимо разделить результат на 3. Рассмотрим типичную задачу.
Средний результат Марии в 11 тестах равен 80. При определении итогового среднего результата учительница проявляет благосклонность и отбрасывает низший результат. В нашем случае она отбрасывает 30. Какой итоговый средний результат у Марии?
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!