Занимательная химия для детей и взрослых - Илья Леенсон
Шрифт:
Интервал:
Существует ли другой путь попадания полония в организм? Считается, например, что это возможно при курении. Как такое может случиться? Вот что говорит об этом преподаватель химии профессор Рэймонд Чанг из Уильямс-колледжа, штат Массачусетс. Как известно, при выращивании табака в почву вносят много фосфатных удобрений. Если в них попадет один из продуктов распада урана – радий, то он в почве будет медленно превращаться в радон, как видно из схемы превращений урана. Газообразный радон концентрируется в почве и в приповерхностном слое воздуха под воздушным «куполом», который образован табачными листьями (см. фото).
Табачная плантация
Дочерние твердые продукты распадающегося радона прочно приклеиваются к поверхности листьев и проникают внутрь них. Радон живёт недолго, продукт его распада, 218Ро, – считанные минуты, поэтому довольно быстро образуется радиоактивный свинец-210. Постепенно его количество в листьях растущего табака увеличивается. При курении человек вдыхает с дымом мельчайшие твердые частицы, содержащие 210Pb, которые оседают в дыхательных путях, а затем переносятся в печень, селезенку и в костный мозг. Медленно распадаясь, 210Pb превращается в 210Ро, и это происходит в течение всего периода, когда человек курит. Постоянное облучение упомянутых органов и костного мозга увеличивает вероятность возникновения рака у курильщика. Конечно, чтобы такой механизм сработал, в удобрение должен попасть не сам уран, а радий. Возможность такого события сильно зависит от того, какие именно ископаемые были использованы для получения фосфатных удобрений и какова была технология их переработки.
Получение полония
Полоний (речь идет только о его изотопе 210Ро) можно получить из природных источников или синтезировать. Первый способ малопродуктивен, но когда-то он был единственным. При переработке урановых руд 90 % полония остается в отвалах, из которых его очень трудно извлечь. Поэтому используют другой метод: выделяют из руды предыдущие члены радиоактивного ряда и ждут, пока в них в результате распада накопится достаточно полония. Так, если выделить 210Pb, то из него периодически можно «выдаивать» 210Ро путем отгонки (в англоязычной литературе в этом контексте используется глагол to milk, буквально – «доить»). Когда-то применяли такой способ: выделяющийся из радия газообразный радон запаивали в стеклянные ампулы, и после полного его распада (на это требовалось чуть больше месяца) в них появлялся тот же 210Pb. Сейчас 210Ро синтезируют путем облучения нейтронами природного висмута в ядерных реакторах (промежуточно образуется βактивный изотоп висмута-210):
. Чтобы получить полоний, нейтронный поток должен быть очень мощным. Так, если на 1 см2 каждую секунду будут попадать даже 500 млрд нейтронов, то через месяц облучения в 100 г висмута образуется лишь 2 мкг (две миллионные доли грамма) полония. Увеличение плотности нейтронного потока до 100 трлн в секунду даст в 100 г висмута за месяц 0,4 мг 210Ро; такое количество почти не видно невооруженным глазом. Далее полоний нужно отделить от большой массы висмута; это можно сделать отгонкой в ваку уме при нагревании – как это делала Мария Кюри. Чистый полоний получают гальваническим методом, осаждая его из раствора в азотной кислоте на катоде. Можно представить, насколько трудно получить граммовые и даже миллиграммовые количества полония! Первый образец чистого полония-210 был получен только в марте 1944 г. в США. В СССР под научным руководством З. В. Ершовой было создано экологически чистое производство полония, который использовали в качестве источника энергии для луноходов. Для получения более долгоживущих изотопов 208Ро и 209Ро можно использовать ядерные реакции 207Pb + α → 208Po + 3 n , 209Bi + + p → 208Po + 2 n , 209Bi + d → 208Po + 3 n , 209Bi + p → 209Po + n , 209Bi + d → 209Po + 2 n , где d – ускоренные дейтроны (ядра дейтерия), облучение проводят в циклотроне. Все эти методы позволяют получить лишь ничтожные количества 208Ро и 209Ро, достаточные только для изучения их радиоактивных свойств.Свойства полония
Полоний – один из самых опасных радиоэлементов. Эксперименты с ним требуют соблюдения строжайших мер безопасности. Исследователь должен быть надежно защищен от попадания даже малейших следов этого элемента в дыхательные пути, в пищеварительный тракт. Недопустим также контакт полония или его химических соединений с кожей. Несмотря на все эти трудности, были изучены как физические, так и химические свойства полония и его соединений. Полоний – мягкий серебристо-серый металл, похожий на свинец, с температурой плавления 254 °С. Это тяжелый металл, его плотность близка к 9,5 г/см3 – почти как у серебра. Плотность полония подсчитана не непосредственным измерением, а путем рентгенографического определения параметров кристаллической решетки. Это – следствие высокой радиоактивности, которая не позволяет получать значительные количества компактного металла. Известно, что препараты радия (t1/2 = 1600 лет) у Марии Кюри светились в темноте. Что уж говорить о полонии-210! Он не только светится, но и очень сильно нагревается за счет поглощения собственных α-частиц, несущих огромную энергию. Ведь при равных массах полоний в тысячи раз активнее радия. Кусочек полония размером с наперсток выделяет около 2 кВт тепловой энергии.
Если получить весомые количества полония, от них необходимо непрерывно отводить теплоту. Если этого не делать, металлический полоний почти сразу расплавится, а затем испарится. Но даже если от образца эффективно отводить теплоту, с его поверхности будут выделяться микрочастицы металла. Поэтому металлический полоний способен легко образовывать в воздухе мельчайшие частицы аэрозоля, что резко увеличивает опасность работы с ним. Этот эффект типичен для сильно радиоактивных металлов и объясняется быстрым накоплением на них отрицательных зарядов при вылете в воздух положительно заряженных α-частиц. Кроме того, когда атомы полония оседают на мельчайших частицах пыли, то в результате механической отдачи при вылете α-частиц такие пылинки совершают «прыжки» и потому способны отрываться от поверхностей, на которые они осели.
Полоний кипит при сравнительно невысокой температуре – 949 °С, что определяет его летучесть (для сравнения: температура кипения свинца – 1710 °С, олова – 2360 °С). В парах полоний находится в виде молекул Ро2. Летучесть полония облегчает его очистку, а также перемещение микроколичеств металла из одной части аппаратуры в другую путем их нагрева и охлаждения. В то же время летучесть затрудняет работу с ощутимыми количествами полония. По химическим свойствам полоний несколько похож на висмут, а также на свой ближайший аналог – неметалл теллур и проявляет типичные для элемента VI группы степени окисления: –2, +2, +4, +6. На воздухе полоний медленно окисляется (быстро при нагревании) с образованием красного диоксида РоО2. Сероводород из растворов солей полония осаждает черный сульфид PoS – тот самый, который был в осадке у Марии Кюри.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!