Хлопок одной ладонью - Николай Кукушкин
Шрифт:
Интервал:
13. Porkka-Heiskanen, T. & Kalinchuk, A. V. Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15, 123–135, doi:10.1016/j.smrv.2010.06.005 (2011).
14. Fredholm, B. B. Adenosine, adenosine receptors and the actions of caffeine. Pharmacology & toxicology 76, 93–101 (1995).
15. Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34, doi:10.1016/j.neuron.2013.12.025 (2014).
16. Liu, Z.-W., Faraguna, U., Cirelli, C., Tononi, G. & Gao, X.-B. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. Journal of Neuroscience 30, 8671–8675 (2010).
17. Babkoff, H., Sing, H. C., Thorne, D. R., Genser, S. G. & Hegge, F. W. Perceptual distortions and hallucinations reported during the course of sleep deprivation. Percept Mot Skills 68, 787–798, doi:10.2466/pms.1989.68.3.787 (1989).
18. Siegel, R. K. & West, L. J. Hallucinations: Behavior, experience, and theory (John Wiley & Sons, 1975).
19. West, L. J., Pierce, C. M. & Thomas, W. D. Lysergic Acid Diethylamide: Its Effects on a Male Asiatic Elephant. Science 138, 1100–1103, doi:10.1126/science.138.3545.1100 (1962).
20. Siegel, R. K. LSD-induced effects in elephants: Comparisons with musth behavior. Bulletin of the Psychonomic Society 22, 53–56, doi:10.3758/BF03333759 (1984).
21. de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510, doi:10.1126/science.aah5982 (2017).
22. Stickgold, R., Hobson, J. A., Fosse, R. & Fosse, M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294, 1052–1057, doi:10.1126/science.1063530 (2001).
23. Siegel, J. M. The stuff dreams are made of: anatomical substrates of REM sleep. Nature neuroscience 9, 721 (2006).
24. Englot, D. J. A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy Behav 80, 68–74, doi:10.1016/j.yebeh.2017.12.041 (2018).
25. Penfield, W. & Rasmussen, T. The cerebral cortex of man; a clinical study of localization of function (Macmillan, 1950).
26. Penfield, W. The interpretive cortex; the stream of consciousness in the human brain can be electrically reactivated. Science 129, 1719–1725, doi:10.1126/science.129.3365.1719 (1959).
27. Bartolomei, F. et al. Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology 63, 858–864, doi:10.1212/01.wnl.0000137037.56916.3f (2004).
28. Graziano, M. S. A., Taylor, C. S. R. & Moore, T. Complex Movements Evoked by Microstimulation of Precentral Cortex. Neuron 34, 841–851, doi:https://doi.org/10.1016/S0896–6273 (02) 00698–0 (2002).
29. Friston, K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360, 815–836, doi:10.1098/rstb.2005.1622 (2005).
30. Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51–58, doi:10.1038/nature12654 (2013).
31. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6, 1160–1170 (1986).
32. Buzas, P. et al. Model-based analysis of excitatory lateral connections in the visual cortex. J Comp Neurol 499, 861–881, doi:10.1002/cne.21134 (2006).
33. Fiorani Junior, M., Rosa, M. G., Gattass, R. & Rocha-Miranda, C. E. Dynamic surrounds of receptive fields in primate striate cortex: a physiological basis for perceptual completion? Proc Natl Acad Sci USA 89, 8547–8551, doi:10.1073/pnas.89.18.8547 (1992).
34. Sirosh, J. & Miikkulainen, R. Cooperative self-organization of afferent and lateral connections in cortical maps. Biological Cybernetics 71, 65–78, doi:10.1007/BF00198912 (1994).
35. O'Reilly, R. C. & Rudy, J. W. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol Rev 108, 311–345, doi:10.1037/0033-295x.108.2.311 (2001).
36. Isaacson, J. S. & Scanziani, M. How inhibition shapes cortical activity. Neuron 72, 231–243, doi:10.1016/j.neuron.2011.09.027 (2011).
37. Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E. & Froemke, R. C. Developmental sensory experience balances cortical excitation and inhibition. Nature 465, 932–936, doi:10.1038/nature09119 (2010).
38. Benchenane, K., Tiesinga, P. H. & Battaglia, F. P. Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21, 475–485, doi:10.1016/j.conb.2011.01.004 (2011).
39. Mumford, D. On the computational architecture of the neocortex. Biological cybernetics 66, 241–251 (1992).
40. Mumford, D. On the computational architecture of the neocortex. Biological cybernetics 65, 135–145 (1991).
41. Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behavioral neuroscience 100, 147 (1986).
42. Tanaka, K. Z. et al. Cortical representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347–354 (2014).
43. Wallenstein, G. V., Hasselmo, M. E. & Eichenbaum, H. The hippocampus as an associator of discontiguous events. Trends in Neurosciences 21, 317–323, doi:https://doi.org/10.1016/S0166–2236 (97) 01220–4 (1998).
44. Bota, M., Sporns, O. & Swanson, L. W. Architecture of the cerebral cortical association connectome underlying cognition. Proc Natl Acad Sci USA 112, E2093–2101, doi:10.1073/pnas.1504394112 (2015).
45. van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J Neurosci 31, 15775–15786, doi:10.1523/JNEUROSCI.3539–11.2011 (2011).
46. Rebola, N., Carta, M. & Mulle, C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 18, 208–220, doi:10.1038/nrn.2017.10 (2017).
47. Sharon, T., Moscovitch, M. & Gilboa, A. Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proc Natl Acad Sci USA 108, 1146–1151, doi:10.1073/pnas.1005238108 (2011).
48. Morris, R. G. M., Garrud, P., Rawlins, J. N. P. a. & O'Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 297, 681 (1982).
49. Rasch, B. & Born, J. Maintaining memories by reactivation. Curr Opin Neurobiol 17, 698–703, doi:10.1016/j.conb.2007.11.007 (2007).
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!