📚 Hub Books: Онлайн-чтение книгДомашняяНаша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

Шрифт:

-
+

Интервал:

-
+
1 ... 8 9 10 11 12 13 14 15 16 ... 123
Перейти на страницу:

Возможно, наша Вселенная расширяется

Самое грандиозное шоу на Земле, в рамках которого поколения живых организмов рождаются, взаимодействуют и умирают, началось около 4,5 млрд лет назад. Кроме того, мы открыли, что это часть ещё более грандиозного спектакля, в котором поколения галактик рождаются, взаимодействуют и умирают в космической «экосистеме». Так вот, не может ли быть в этой постановке третьего уровня, на котором могут рождаться и умирать целые вселенные? В частности, нет ли признаков того, что наша Вселенная имела начало во времени? Если да, как и когда это произошло?

Почему галактики не падают? С ответа на этот вопрос начинается наш следующий рывок, отодвигающий предел знания ещё дальше в прошлое. Мы видели, что Луна не падает на Землю, потому что обращается вокруг неё с высокой скоростью. Вселенная во всех направлениях населена галактиками, и очевидно, что для них это объяснение не подходит. Не все они обращаются вокруг нас. И если Вселенная вечна и в целом статична (то есть далёкие галактики не движутся быстро), почему же они не упадут на нас, как случилось бы с Луной, если бы она вдруг остановилась?

Конечно, во времена Ньютона никто не знал о галактиках. Но если, подобно Джордано Бруно, представить себе бесконечную статическую Вселенную, однородно заполненную звёздами, то должно иметься хотя бы примерное объяснение, позволяющее не волноваться, что они на нас упадут. Законы Ньютона утверждают, что к каждой звезде приложена большая (в действительности бесконечная) сила гравитации, действующая в равной мере во всех направлениях, и можно заключить, что эти противоположно направленные силы погасят друг друга, оставив все звёзды в неподвижности.

В 1915 году это объяснение было опровергнуто новой теорией гравитации — общей теорией относительности.[7] Её автор Альберт Эйнштейн понимал, что статическая бесконечная Вселенная, однородно заполненная материей, не укладывается в новые уравнения гравитации. И как же он поступил? Он, безусловно, усвоил главный урок Ньютона: надо смело экстраполировать свои уравнения и представить, какого рода Вселенная будет им удовлетворять, а затем выяснить, какие наблюдения позволяют проверить, действительно ли мы живём в такой Вселенной. По иронии судьбы, даже Эйнштейн, один из самых изобретательных учёных всех времён, чей принцип состоял в том, чтобы подвергать сомнению самые несомненные допущения и авторитеты, не решился усомниться в собственном авторитете и собственной уверенности в том, что мы живём в вечной, неизменной Вселенной. Вместо этого он совершил, как впоследствии сам признавался, свою величайшую ошибку: изменил уравнения, добавив дополнительный член, позволяющий Вселенной быть статической и вечной. Двойная ирония состоит в том, что сегодня этот дополнительный член, похоже, вновь появился в уравнениях в форме космической тёмной энергии, которую мы ещё обсудим, но на этот раз он имеет иной смысл и не делает нашу Вселенную статической.

Человеком, которому, наконец, хватило смелости и способностей, чтобы довериться уравнениям Эйнштейна, оказался русский физик и математик Александр Фридман. Он решил их в самом общем случае для Вселенной, однородно заполненной материей, и обнаружил нечто шокирующее: большинство решений не было статическим, а изменялось во времени! Статическое решение Эйнштейна было не просто исключением из обычного поведения, но и являлось неустойчивым: почти статическая Вселенная не могла оставаться в таком состоянии длительное время. Если Ньютон показал, что естественное состояние Солнечной системы — пребывать в движении (Земля и Луна просто не могут вечно оставаться в неподвижности), то Фридман продемонстрировал, что естественное состояние нашей Вселенной — движение.

О каком именно движении шла речь? Фридман открыл, что самым естественным состоянием для Вселенной является расширение или сжатие. Если она расширяется, то все объекты внутри неё отдаляются друг от друга, как шоколадные крошки на поднимающемся кексе (рис. 3.2). В этом случае в прошлом все они должны были располагаться ближе друг к другу. На самом деле в простейшем фридмановском решении для расширяющейся Вселенной в прошлом есть определённый момент, когда всё, что мы наблюдаем сегодня, находилось в одном и том же месте, создавая там бесконечную плотность. Иными словами, у нашей Вселенной есть начало, и её рождение представляло собой взрыв чего-то бесконечно плотного. Большой взрыв.

Наша математическая вселенная. В поисках фундаментальной природы реальности

Рис. 3.2. Далёкие галактики удаляются друг от друга, как шоколадные крошки на поднимающемся кексе (слева): с точки зрения любой из них, все остальные удаляются со скоростью, пропорциональной расстоянию до них. Но если считать, что пространство растягивается, как поверхность кекса, то не галактики движутся относительно пространства, а само пространство меняется так, что все расстояния равномерно увеличиваются (справа), как если бы мы переобозначили отметки на всех линейках, сделав из миллиметров сантиметры.

Реакцией на фридмановский Большой взрыв была оглушительная тишина. Хотя его статья была опубликована в одном из наиболее престижных физических журналов Германии и обсуждалась Эйнштейном и иными учёными, в итоге она была, по большому счёту, проигнорирована и не оказала практически никакого влияния на господствующую картину мира того времени. Игнорирование великих озарений — давняя традиция в космологии (на самом деле, науки в целом): мы уже обсуждали гелиоцентризм Аристарха и далёкие солнечные системы Бруно, а дальше в этой и в следующих главах мы встретим ещё много таких примеров. В случае Фридмана, я думаю, причина отчасти была в том, что он опередил своё время. В 1922 году известная Вселенная, по сути, ограничивалась галактикой Млечный Путь (на самом деле, лишь небольшой её частью, которую люди могли наблюдать), а она не расширяется, поскольку сотни миллиардов её звёзд удерживаются на орбитах гравитационным притяжением. Это ответ на девятый вопрос из списка в предыдущей главе: расширяется ли Млечный Путь? Фридмановское расширение относится лишь к таким большим масштабам, в которых можно игнорировать скучивание материи в галактики, а галактик — в скопления. На рис. 2.2 видно, что на больших расстояниях — около 100 млн световых лет — распределение галактик становится довольно однородным, что позволяет применять фридмановские решения для однородной Вселенной, а значит, галактики, разделённые таким большим расстоянием, должны удаляться друг от друга. Но сам факт существования других галактик был установлен Хабблом только в 1925 году, тремя годами позднее! Тут бы и настал звёздный час Фридмана. К сожалению, его дни были сочтены: в тот самый год он умер от брюшного тифа в возрасте всего 37 лет.

Для меня Фридман — один из величайших, но, увы, недооценённых героев космологии. Пока я писал этот отрывок, я перечитал первоисточник, статью Фридмана 1922 года, которая заканчивается интригующим примером огромной, в 5 миллиардов триллионов масс Солнца, вселенной, для которой он рассчитал время жизни: около 10 млрд лет — того же порядка, что и общепризнанный сегодня возраст Вселенной. Фридман не объясняет, откуда он взял это значение задолго до открытия галактик, но это, безусловно, достойное окончание выдающейся статьи выдающегося человека.

1 ... 8 9 10 11 12 13 14 15 16 ... 123
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?