Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио
Шрифт:
Интервал:
Тут-то перед нами и встает вопрос о значении «объективной истины» в математике. Предположим, что в 2016 году все же будет представлено строгое доказательство проблемы Гольдбаха. Можно ли будет тогда сказать, что это утверждение было верным уже тогда, когда о нем задумался Декарт? Многие, наверное, согласятся, что это глупый вопрос. Ясно, что если истинность утверждения доказана, значит, оно всегда было истинным, даже до того, как мы в этом убедились. Или рассмотрим другой невинный на вид пример – гипотезу Каталана (подробнее см. Ribenboim 1994). Числа 8 и 9 – последовательные целые числа, и каждое из них равно степени натурального числа – 8 = 23 и 9 = 32. В 1844 году бельгийский математик Эжен Шарль Каталан (1814–1894) предположил, что среди всех возможных степеней целых чисел лишь одна пара последовательных чисел, за исключением 0 и 1, представляет собой степени других целых чисел, и это 8 и 9. Иными словами, можно хоть всю жизнь записывать все целые степени, однако не найдешь другой пары таких чисел, которые различаются на 1. На самом деле, еще в 1342 году франко-еврейский философ и математик Леви бен Гершом (1288–1344) доказал малую часть этой гипотезы: он показал, что 8 и 9 – это единственные степени 2 и 3, которые различаются на 1. Большой шаг вперед был сделан математиком Робертом Тейдеманом в 1976 году. И все же доказательство гипотезы Каталана в общем виде ставило в тупик лучшие математические умы вот уже более 150 лет. Но вот наконец 18 апреля 2002 года румынский математик Преда Михайлеску представил полное доказательство гипотезы. Оно было опубликовано в 2004 году и на сегодня полностью принято математическим сообществом. И снова можно задаться вопросом: когда гипотеза Каталана стала истинной: в 1342 году? В 1844? В 1976? В 2002? В 2004? Разве не очевидно, что это утверждение всегда было истинным, хотя мы не знали, что оно истинно? Именно такого рода утверждения платоники и называют «объективными истинами».
Некоторые математики, философы, специалисты по когнитивной психологии и другие «потребители» математики, например программисты, считают платоновский мир плодом воображения чересчур мечтательных умов (такую точку зрения и другие догмы мы еще обсудим подробнее на страницах этой книги, в главе 9). Более того, в 1940 году знаменитый историк математики Эрик Темпл Белл (1883–1960) сделал вот какое предсказание (Bell 1940).
Согласно пророкам, последний приверженец платоновских идеалов разделит участь динозавров к 2000 году. И тогда к математике, лишившейся мифического покрова этернализма, будут относиться именно как к той науке, какой она была всегда, – к языку, изобретенному людьми с определенной целью, которую они сами себе поставили. Последний храм абсолютной истины исчезнет, а вместе с ним исчезнет и ничто, которое в нем свято оберегали.
Предсказание Белла не сбылось. Хотя в науке и появились догмы, диаметрально противоположные платонизму (правда, противоположные, если можно так выразиться, с разных сторон), им не удалось полностью завоевать умы (и сердца!) всех математиков и философов, и раскол между ними в наши дни остался прежним.
Однако давайте предположим, что в один прекрасный день платонизм победил, и все мы стали убежденными платониками. Объясняет ли платонизм «непостижимую эффективность» математики при описании нашего мира? Не совсем. Почему физическая реальность ведет себя в соответствии с законами, обретающимися в абстрактном платоновском мире? Ведь в этом, в сущности, и состоит одна из загадок Пенроуза, а Пенроуз – убежденный платоник. Так что пока придется нам смириться с фактом, что даже если бы все мы стали сторонниками платонизма, тайна могущества математики осталась бы тайной. По словам Вигнера: «Невольно создается впечатление, что чудо, с которым мы сталкиваемся здесь, не менее удивительно, чем чудо, состоящее в способности человеческого разума нанизывать один за другим тысячи аргументов, не впадая при этом в противоречие».
Чтобы вполне оценить масштабы этого чуда, нам придется углубиться в жизнь и наследие самих чудотворцев – блистательных умов, которым мы обязаны открытием множества неимоверно точных математических законов природы.
Наука, в отличие от десяти заповедей, попала в руки человечества не в виде надписей на внушительных каменных скрижалях. История науки – это история взлетов и падений многочисленных теорий, умозаключений и моделей. Многие идеи, на вид весьма многообещающие, оказались фальстартами или вели в тупик. Многие теории, казавшиеся в свое время незыблемыми, впоследствии разваливались, не пройдя суровых испытаний дальнейших экспериментов и наблюдений, и оказывались забыты навеки. Даже незаурядный ум авторов некоторых концепций не гарантировал, что эти концепции не будут смещены со сцены. Например, великий Аристотель был убежден, что камни, яблоки и прочие тяжелые предметы падают вниз, поскольку ищут свое естественное место, а оно – в центре Земли. Когда эти тела приближаются к Земле, утверждал Аристотель, они ускоряются, поскольку рады вернуться домой. А вот воздух (и огонь) поднимаются вверх, поскольку естественное место воздуха – в небесных сферах. Каждому предмету приписывалась своя природа на основании того, к какой стихии, как считалось, они ближе всего – к земле, огню, воде или воздуху. Как говорил сам Аристотель (Aristotle ca. 330 BCa, b; см. также Koyré 1978).
Из существующих [предметов] одни существуют по природе, другие – в силу иных причин. … Простые тела, как-то: земля, огонь, воздух, вода – эти и подобные им, говорим мы, существуют по природе. Все упомянутое очевидно отличается от того, что образовано не природой: ведь все существующее по природе имеет в самом себе начало движения и покоя… … Природа есть некое начало и причина движения и покоя для того, чему она присуща первично, сама по себе… Согласно с природой [ведут себя] и эти [предметы], и все, что присуще им само по себе, например огню нестись вверх… (Пер. В. Карпова.)
Аристотель даже попытался сформулировать количественный закон движения. Он утверждал, что чем тяжелее предмет, тем быстрее он падает, причем его скорость прямо пропорциональна весу (то есть предмет вдвое тяжелее и падать будет со вдвое большей скоростью). Хотя житейский опыт и показывал, что это вполне разумно – ведь и правда кирпич ударяется о пол раньше, чем перышко, если бросить их с одной высоты, – однако Аристотель так и не подверг свое количественное утверждение более тщательной проверке. То ли ему это не приходило в голову, то ли он не считал необходимым проверить, действительно ли два кирпича, связанные вместе, падают вдвое быстрее, чем один кирпич. Галилео Галилей (1564–1642) придавал гораздо больше значения математике и эксперименту, а благополучие падающих яблок и кирпичей не слишком его заботило, и он первым заметил, что Аристотель глубоко заблуждался. При помощи хитроумного мысленного эксперимента Галилею удалось показать, что закон Аристотеля не имеет никакого смысла, поскольку логически непоследователен (Galileo 1589–92). Рассуждал Галилей следующим образом. Предположим, мы свяжем вместе два предмета, один легче, другой тяжелее. С какой скоростью упадет получившийся составной предмет по сравнению с двумя предметами, из которых он состоит? С одной стороны, согласно закону Аристотеля, можно сделать вывод, что упадет он с какой-то средней скоростью, поскольку более легкий предмет задержит падение более тяжелого. С другой, если учесть, что составной предмет на самом деле тяжелее каждой из своих частей, падать он должен даже быстрее, чем более тяжелый из двух компонентов, а это приводит к очевидному противоречию. Перо на Земле падает медленнее кирпича по одной простой причине – из-за сопротивления воздуха: если бы перо и кирпич падали с одной и той же высоты в вакууме, то коснулись бы пола одновременно. Это показали самые разные эксперименты, самый зрелищный из которых провел Дэвид Рэндольф Скотт, астронавт с «Аполлона-15» и седьмой человек, чья нога ступала на Луну: он одновременно выпустил из одной руки молоток, а из другой перо. Поскольку никакой существенной атмосферы у Луны нет, молоток и перо коснулись поверхности одновременно.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!