Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио
Шрифт:
Интервал:
Рис. 11
Эту фантастическую историю пересказывают и византийский зодчий VI века Анфимий из Тралл, и сразу несколько историков XII века, хотя неясно, возможно ли такое на практике. И все же собрание полулегенд-полусказок об Архимеде дает нам достаточно свидетельств того, с каким благоговением к этому «мудрецу» относились поколения потомков.
Как я уже отмечал, сам Архимед, высокочтимый «Бриарей от геометрии», не слишком ценил свои военные игрушки и в основном считал их отступлениями от главного – геометрической науки. К несчастью, эта надменность в конце концов стоила Архимеду жизни. Когда римляне все же захватили Сиракузы, Архимед был так поглощен геометрическими чертежами на подносе с песком, что даже не заметил, что кругом кипит бой. Согласно некоторым историкам, когда римский воин приказал Архимеду следовать за ним к Марцеллу, старый геометр возмущенно ответил: «Не трогай мои чертежи!» Этот ответ привел воина в такую ярость, что он нарушил приказ командира, выхватил меч и убил величайшего математика древности[26]. На рис. 11 приведена сделанная в XVIII веке предполагаемая репродукция мозаики, обнаруженной в Геркулануме, на которой запечатлены последние мгновения жизни «наставника».
Гибель Архимеда в некотором смысле знаменовала конец необычайно плодотворной эпохи в истории математики. Вот что отметил английский математик и философ Альфред Норт Уайтхед.
Гибель Архимеда от рук римского солдата – это символ перемен первой величины в масштабе всего мира. Римляне – великий народ, однако их проклятием стала выхолощенность, прислужница практичности. Они не были мечтателями – и не могли потому встать на иную точку зрения, что могло бы дать им более фундаментальную власть над силами природы. Ни один римлянин не поплатился жизнью за то, что был поглощен созерцанием математического чертежа.
К счастью, несмотря на скудость сведений о жизни Архимеда, до нас дошли многие (правда, не все) его поразительные сочинения. Архимед имел обыкновение писать о своих математических открытиях в письмах нескольким друзьям-математикам или уважаемым людям. В список его корреспондентов, помимо всех прочих, входили и астроном Конон Самосский, математик Эратосфен Киренский и царевич Гелон. После смерти Конона Архимед послал несколько писем его ученику Досифею Пелузийскому. Труды Архимеда касаются самых разных вопросов математики и физики[27]. Вот лишь немногие из его великих достижений. Он разработал общий метод вычисления площадей самых разных плоских фигур и объема пространств, ограниченных самыми разными кривыми поверхностями. В их число входили площадь круга, сегментов параболы и спирали и объемы сегментов цилиндров, конусов и других тел, полученных путем вращения парабол, эллипсов и гипербол. Он доказал, что число p, отношение длины окружности к ее диаметру, должно быть больше 310/71 и меньше 31/7. В те времена, когда еще не существовало методов описания очень больших чисел, Архимед изобрел систему, позволявшую не просто записывать числа любой величины, но и манипулировать ими. В физике Архимед открыл законы, управляющие плаванием тел, таким образом заложив основы современной гидростатики. Кроме того, он определил центры тяжести многих объемных тел и сформулировал законы механики рычагов. Архимед проводил астрономические наблюдения, чтобы определять продолжительность года и расстояния до планет.
Оригинальность мышления и внимание к мелочам характерны для трудов многих греческих математиков. И, тем не менее, методы рассуждений и поиска решения, которые разработал Архимед, выделяют его из рядов всех ученых того времени. Приведу лишь три показательных примера, дающие возможность оценить масштабы изобретательности Архимеда. Один на первый взгляд кажется всего лишь забавным курьезом, однако при более пристальном рассмотрении показывает всю глубину пытливого ума Архимеда. Остальные два примера показывают, насколько методы Архимеда опережали время – вот почему я считаю, что именно они возвышают Архимеда до положения «волшебника».
Судя по всему, Архимед очень увлекался большими числами. Однако очень большие числа неудобно записывать обычным способом, они слишком громоздкие (попробуйте хотя бы выписать чек на 8,4 триллиона долларов, национальный долг США на июнь 2006 года, и втиснуть это число в строчку, выделенную под сумму). Поэтому Архимед разработал систему, позволявшую записывать числа длиной до 80 000 триллионов знаков. Затем он применил эту систему в оригинальном трактате под названием «Псаммит» («Исчисление песчинок»), где доказал, что общее количество песчинок в мире не бесконечно.
Даже введение в трактат столь гениально, что я приведу здесь отрывок из него (все сочинение посвящено Гелону, сыну царя Гиерона II) (Heath 1897).
Государь Гелон!
Есть люди, думающие, что число песчинок бесконечно. Я не говорю о песке в окрестности Сиракуз и других местах Сицилии, но о всем его количестве как в странах населенных, так и необитаемых.
Другие думают, что хотя число это и не бесконечно, но большего представить себе невозможно.
Если бы эти последние вообразили массу песку в объеме земного шара, причем им были бы наполнены все моря и пропасти до вершин высочайших гор, то, конечно, они еще меньше могли бы поверить, что легко назвать число, его превосходящее.
Я, напротив, постараюсь доказать с геометрической точностью, которая убедит тебя, что между числами, упоминаемыми мной в книге, написанной Зевксиппу [к сожалению, она утрачена], есть числа, превышающие число песчинок, которые можно вместить не только в пространстве, равном объему Земли, наполненной указанным выше способом, но и целого мира.
Ты знаешь, что, по представлению некоторых астрономов, мир имеет вид шара, центр которого совпадает с центром Земли, а радиус равен длине прямой, соединяющей центры Земли и Солнца.
Но Аристарх Самосский в своих «Предложениях», написанных им против астрономов, отвергая это представление, приходит к заключению, что мир гораздо больших размеров, чем только что указано.
Он полагает, что неподвижные звезды и солнце не меняют своего места в пространстве, что Земля движется по окружности около Солнца, находящегося в ее центре, и что центр шара неподвижных звезд совпадает с центром Солнца, а размер этого шара таков, что окружность, описываемая, по его предположению, Землей, находится к расстоянию неподвижных звезд в таком же отношении, в каком центр шара находится к его поверхности (здесь и далее пер. Г. Попова).
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!