📚 Hub Books: Онлайн-чтение книгРазная литератураИнтернет-журнал "Домашняя лаборатория", 2008 №3 - Журнал «Домашняя лаборатория»

Интернет-журнал "Домашняя лаборатория", 2008 №3 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+
1 ... 148 149 150 151 152 153 154 155 156 ... 204
Перейти на страницу:
должен быть в 5 раз больше, чем объем ячейки детектора. Это означало бы для ячейки длиной 3 мм в КЭ, что пик должен иметь в капилляре ширину 1.5 см. Однако, поскольку в капиллярном электрофорезе происходит детектирование в режиме реального времени, и благодаря малому объему ячейки детектора и отсутствию соединительных элементов размывания зон не происходит, это правило, конечно, не вполне применимо.

Удлинение участка детектирования, как в случае описанной Z-ячейки со световым путем 3 мм, имеет определенное влияние на эффективность и, как следствие, на разделение зон пробы, особенно, если в течение короткого времени анализа достигается высокая эффективность. При эффективности анализа 500 тыс. теоретических тарелок и времени миграции 5 минут от начала колонки до ячейки детектора ширина пика составляет 1.0 мм.

Это отчетливо указывает на несоответствие между объемами детектирования и пика в Z-ячейках, Такие проблемы менее существенны в капиллярах с ячейкой детектирования, имеющей форму пузырька, так как объем пика при прохождении ячейки детектирования остается приблизительно постоянным, и длина пика в капилляре будет сокращаться. Поэтому с увеличением внутреннего диаметра длина пика автоматически сокращается. Это относится не только к прохождению зон веществ через ячейку детектора, но также и к электрофоретическому перемещению веществ, так как они перемещаются вдоль линий поля через весь объем ячейки детектирования.

Рис. 26 показывает структуру и расположение стандартных блоков детекторов с одной длиной волны, сканирующих детекторов, а также ДМД.

Рис. 26. Путь света различных УФ-детекторов для КЭ.

А — детектор одной длины волны с ртутной лампой (1), фильтр (5); В — многоволновой детектор с дейтериевой и вольфрамовыми лампами (2), поворачиваемое зеркало (3) и решеточный монохроматор (6); С — быстросканирующий детектор с вращающимся решеточным монохроматором; D — ДМД (8).

Наиболее часто используемым является УФ-детектор с постоянной или изменяемой длиной волны. Для этого в качестве источника света должен использоваться непрерывный излучатель. Даже если энергия света из-за этого значительно снижена, возможна работа в области длин волн от 190 до 320 нм.

Еще большие длины волн вряд ли можно использовать, так как только очень немногие молекулы обладают поглощением в этой области. Рис. 27 показывает сравнение интенсивности света дейтериевой лампы и некоторых других дискретных излучателей.

…???…

Рис. 27.

При этом интенсивность света дискретных излучателей выше, чем у дейтериевой лампы. Это наглядно показывает возможности оптимизации УФ-детектирования за счет повышения количества испускаемого света. Ртутную (185 нм и 254 нм) или цинковую (214 нм) лампы удается использовать только в одноволновых детекторах. Количество света, производимого этими лампами, может быть примерно в 50 раз больше, чем в случае употребляемых обычно дейтериевых ламп, так как в данном случае не возникают потери, связанные с дифракцией на решетке.

Несмотря на незначительную толщину слоя, запись УФ-спектров возможна с помощью чувствительных быстрых сканирующих детекторов или ДМД.

Применением многоволнового детектора в КЭ могут быть привнесены известные из ВЭЖХ преимущества. К ним относятся облегчение оптимизации буфера за счет автоматического распознавания пика, контроль гомогенности пика за счет сравнения спектров в пределах пика, а также оптимизация чувствительности для веществ с сильно различающимися УФ-спектрами за счет интегрирования сигналов при различных длинах волн.

Из-за осложнений в процессе записи данных в случае быотросканирующего детектора измеряется только ограниченное количество точек в секунду. Поэтому шумы детектора при приеме спектральной информации при переходе от одноволнового режима к режиму быстрого сканирования увеличиваются примерно в 10 раз. Кроме того, спектральные данные из-за медленной записи при появлении пика с очень крутыми краями могут быть представлены искаженно. Диодная матрица, напротив, позволяет записывать многоволновой спектр в режиме реального времени. При этом УФ-спектры не могут искажаться за счет медленной записи данных. Так как именно при КЭ, когда из-за высокой эффективности пиков и короткого времени анализа возникают очень резкие края пиков и может реализоваться ширина пиков в несколько секунд, особенно важна быстрая запись спектров.

Пробы, не обладающие поглощением в УФ-области, можно обнаружить с хорошей чувствительностью на коммерческих УФ-детекторах с помощью непрямого УФ-детектирования. Для этого к буферу добавляют электролит, обладающий УФ-поглощением, подвижность которого близка к подвижности разделяемой пробы. Количество добавленного вместо пробы электролита (механизм вытеснения) должно быть чрезвычайно мало из-за соблюдения условия необходимой электронейтральности, так что буфер в данном случае будет обладать более высокой прозрачностью, что выражается в появлении отрицательного пика. Это схематично представлено на рис. 28. Примеры применения даются в разделе, посвященном анализу ионов. Чувствительность обнаружения при непрямом УФ-детектировании зависит от молярного коэффициента экстинкции добавляемого фонового электролита, поглощающего в УФ-области, и соответствует чувствительности обнаружения нормального УФ-поглощения.

Рис. 28. Принцип непрямого УФ-детектироваиия.

6.5.2. Флуоресцентное детектирование

Помимо УФ-детекторов, с недавнего времени выпускаются также флуоресцентные детекторы. Отличия от детекторов ВЭЖХ заключаются в основном в длинах волн источников света. Кроме обычно используемых дейтериевой и импульсной ксеноновой ламп предлагаются также существенно более дорогие лазерные системы, причем возбуждение в них происходит в видимой области длин волн, так что должны применяться соответствующие производные проб.

Возможно также непрямое флуоресцентное детектирование, при этом речь может идти об универсальной методике детектирования, если имеется в распоряжении подходящий флуорофор без эффекта тушения.

6.5.3. Прочие методы детектирования

Предлагаются методы электропроводности, а также другие электрохимические детекторы. Однако в настоящее время они еще коммерчески недоступны. В качестве примера здесь можно упомянуть определение следов щелочных и щелочно-земельных металлов с помощью микроэлектродов непосредственно в капилляре.

При детектировании по электропроводности возникает проблема, которая заключается в том, что помимо фоновой электропроводности электролита обнаруживается и некоторая электропроводность в зоне вещества. Техника подавления этого нежелательного явления, используемая в ВЭЖХ, здесь не применима. Успешное использование детектора по электропроводности в КЭ описано много раз. С помощью амперометрического детектирования удается прямое обнаружение мейромедиаторов в нервных клетках, причем толщина капилляров, которые применяются для разделения, составляют 5 мкм.

Рис. 29. Конструкция интерфейса соединения КЭ-МС.

Низкие скорости потока (100 нл/мин) делают возможным сочетание КЭ с масс-спектрометрией (МС). Главная проблема при таком сочетании состоит, однако, в том, что в переходнике из капилляра в источник ионов элюент не будет всасываться из капилляра за счет существующего там вакуума. При падении давления 1 бар в капилляре длимой 1 м (внутренний диаметр 50 мкм) линейная скорость потока составляет 1 см/с. Возникающий в результате этого ламинарный параболический профиль потока привел бы к заметной потере эффективности. По этой причине перед ионизацией нужно проводить "улучшение" потока в капилляре. Ионизация электрораспылением позволяет осуществлять МС-детектирование биополимеров в результате образования

1 ... 148 149 150 151 152 153 154 155 156 ... 204
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?