Интернет-журнал "Домашняя лаборатория", 2008 №3 - Журнал «Домашняя лаборатория»
Шрифт:
Интервал:
Кроме того, на воспроизводимость результатов сильно влияет количество вводимой пробы. Рис. 34 показывает воспроизводимость системы и точность количественного анализа в зависимости от количества введенной пробы.
Рис. 34. Воспроизводимость (площади пиков каждых 12 измерений) и уширение полос в зависимости от концентрации пробы.
В этом ряду измерений каждый из 12 анализов был проведен при различных концентрациях пробы, и определялись площади пиков. Для каждой новой концентрации пробы разделительный буфер в сосуде обновлялся. Статистическая обработка отчетливо показала, что при концентрации, которая превышает границу обнаружения от 20 до 50 раз, интегрирование пиков приводит к хорошим результатам. Воспроизводимость находится в пределах от 2 до 3 %. Ошибка очень быстро возрастает до 7 % при интегрировании вблизи границы обнаружения. В этом случае эффективность, а поэтому и возможности разделения соседних пиков улучшаются. Эффективность падает с увеличением концентрации, и при перегрузке системы (при использовании пробы с концентрацией 100 мМ) значение Н составляет 140 мкм.
При оптимизации анализа необходимо находить компромисс между воспроизводимостью и эффективностью. Если требуется количественно проанализировать пробу, то для получения надежных результатов следует работать с концентрациями, превышающими границу обнаружения по крайней мере от 10 до 20 раз. Только при оптимальных условиях удается получить хорошую эффективность и высокую воспроизводимость площадей пиков в пределах от 1.5 до 3 %.
Эти опытные данные хорошо совпадают с характеристиками, приводимыми фирмами-производителями и опубликованными результатами.
Воспроизводимость, таким образом, зависит от многих индивидуальных факторов. Сравнительные измерения на различных приборах КЭ в разных лабораториях показывают, что методы являются принципиально переносимыми, однако точность анализа колеблется от 1 до 2.5 %. Эти испытания отчетливо показывают, что при оценке индивидуальных ошибок большее внимание следует обращать на те из них, которые вызваны аппаратурой и методом.
7. Капиллярный зонный электрофорез (КЗЭ)
Зонный электрофорез является самым простым из описанных здесь способов разделения. Так как многие методы анализа, которые будут обсуждаться ниже, основаны на КЗЭ, необходимо детально рассмотреть его основные принципы. При зонном электрофорезе буфер, значение pH, а также напряженность поля во всем пространстве разделения остаются постоянными. Пробы разделяются за счет их различных подвижностей. Они вводятся в виде отдельной зоны на входе в капилляр и обнаруживаются в виде дискретных, отделенных друг от друга зон на конце детектора. Назначение буфера при этой технике разделения — поддерживать постоянное значение pH и обеспечивать транспортный поток. Выбор pH буфера определяет заряд ионов пробы. Концентрация буфера влияет на ЭОП. Для дальнейшей оптимизации могут использоваться добавки к буферу.
Рис. 35. Схема КЗЭ:
а) начальное состояние, б) различная миграция отдельных зон образцов, в) профиль напряженности поля (сплошная линия) и pH (пунктирная линия) в сечении разделительной камеры.
1.1. Влияние pH
Влияние pH на перенос пробы к детектору объясняется двумя причинами. Как уже отмечалось, на разделение, основанное на электрофоретической миграции, в большей или меньшей степени накладывается ЭОП, на величину которого влияет диссоциация поверхностных силанольных групп. Кроме того, подвижность ионов определяется их степенью диссоциации в несущем электролите и, следовательно, его значением pH. Поэтому можно оптимизировать разделение изменением величины pH и вида буфера. Наибольшее различие в способности к перемещению для слабых электролитов, т. е. наивысшую селективность получают тогда, когда значение pH буфера лежит между значением pKs компонентов пробы (Ks — константа диссоциации). Это поведение аналогично разделению в ионнообменной хроматографии.
Рис. 36. Зависимость подвижности двух слабых кислот от значения pH.
Достижимое разрешение двух пиков можно рассчитать по соотношению:
R = 2(t2 — t1)/(w1 + w2)
где t — время миграции и w — ширина пика у его основания.
Переходя к уравнению и рассчитывая время миграции из подвижностей, получим:
Наилучшее разрешение получается, когда ионы движутся против ЭОП. Высокое напряжение также приводит к улучшению разрешения. Рис. 37 показывает рассчитанное разрешение пары пиков. Пик 2 перемещается при этом с подвижностью 0.5 см2/кВс, а пик 1 — с подвижностью, составляющей от 0 до 30 % от минимальной, в поле 300 В/см в капилляре длиной 50 см (D=10-5 см2/с-1).
Рис. 37. Разделительная способность R двух пиков в зависимости от ЭОП и разницы подвижностей.
Недиссоциированные компоненты пробы движутся через капилляр со скоростью ЭОП. ЭОП зависит, как было показано, также от pH и других свойств электролита, особенно от ионной силы. Возможности, которые появляются из-за наложения электрофоретического перемещения и ЭОП, можно продемонстрировать на примере разделения нуклеотидов. Если ЭОП направляется к катоду, нуклеотиды движутся к аноду, причем наиболее быстро движется трифосфат благодаря наиболее высокому заряду.
Даже при высоком значении pH (>10) ЭОП недостаточен для того, чтобы перенести трифосфат к детектору на катоде. Если электрофоретическая подвижность моно- и дифосфата меньше, чем ЭОП, оии переносятся к детектору, которого достигают через различное время. Разделение этой пробы показано на рис 38. При таких экспериментальных условиях векторного вклада ЭОП недостаточно для переноса трифосфата, который в данном случае перемещается в анодное пространство. При переполюсовке можно определить трифосфат, в то время как ди- и монофосфаты вместе с ЭОП движутся в другом направлении.
При добавлении веществ, образующих ионные пары, подвижность изменяется так, что при анализе могут разделяться все нуклеотиды. С помощью обращения ЭОП в результате модификации поверхности и одновременного изменения направления поля возможно разделение ионов с сильно различающимися подвижностями (см. анализ ионов).
Рис. 38. Разделение некоторых нуклеотидов с помощью КЗЭ.
7.2. Влияние концентрации буфера
На рис. 6 уже было показано влияние ионной силы на ЭОП. Подвижность ионов должна зависеть от концентрации буфера. Важной является также ранее описанная зависимость интенсивности пиков от концентрации буфера. С одной стороны, концентрацию буфера нужно выбирать настолько высокой, чтобы значение pH оставалось постоянным и по возможности минимизировались бы эффекты перегрузки, но, с другой стороны, чтобы ЭОП еще допускал быстрое время анализа и не появлялось бы дополнительное уширение полос из-за тепловыделения. При этом, естественно, в капиллярах с маленьким внутренним
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!