Искусство мыслить рационально. Шорткаты в математике и в жизни - Маркус Дю Сотой
Шрифт:
Интервал:
Настойчивость Бомбелли произвела большое впечатление на Лейбница, назвавшего его выдающимся мастером аналитического искусства: «Итак, некий инженер, Бомбелли, находит практическое применение комплексным числам – возможно, потому что они позволили ему добиться полезных результатов, – в то время как Кардано считал квадратные корни из отрицательных чисел бесполезными. Бомбелли первым дал описание каких бы то ни было комплексных чисел… Его изложение законов вычисления комплексных чисел отличается замечательной доскональностью».
На протяжении целых столетий математики продолжали относиться к этим числам чрезвычайно подозрительно. Если вам нужен квадратный корень из 2, это число, хотя его представление в виде десятичной дроби и бесконечно, можно найти на линейке. Оно расположено где-то между 1,4 и 1,5. Но где находится квадратный корень из –1? На линейке его не увидишь. В конце концов способ, позволяющий увидеть комплексные числа, придумал мой герой – Карл Фридрих Гаусс.
До Гаусса числа, которые использовали математики, изображали отметками на горизонтальной прямой: отрицательные числа отсчитывались влево, положительные – вправо. Гаусс принял гениальное решение пойти в новом направлении. Новые числа стали отсчитываться по вертикали. В представлении Гаусса числа стали не одно-, а двумерными. Его новая карта чисел оказалась чрезвычайно продуктивной. Ее геометрия отражала алгебраический характер поведения этих чисел. Как я объясню в главе 5, хороший чертеж бывает поразительно действенным шорткатом к объяснению сложных идей.
Гаусс изобрел это графическое представление комплексных чисел в процессе поисков доказательства одного поразительного их свойства. Если взять любое уравнение, каким бы сложным оно ни было, состоящее из разных степеней х, не только кубов, для нахождения его корней всегда можно использовать мнимые числа. Изобретать новые числа не было нужды. Мнимые числа уже были средством, достаточно сильным для решения всех уравнений. Это великое открытие Гаусса называется сейчас основной теоремой алгебры[30].
Карта Гаусса стала фантастически полезным шорткатом к ориентации в этом странном новом мире мнимых чисел. Как ни странно, Гаусс хранил свое двумерное визуальное представление в тайне. Позднее его заново независимо открыли два математика-любителя: сначала датчанин Каспар Вессель, а еще позднее – швейцарец Жан Арган. Сегодня эту карту называют диаграммой Аргана[31]. Слава редко достается по заслугам.
Впоследствии французский математик Поль Пенлеве писал в книге «Анализ научных работ до 1900 года» (Analyse des Travaux Scientifiques Jusqu’en 1900):
Естественное развитие этой работы вскоре привело к тому, что геометры стали учитывать в своих исследованиях наряду с вещественными и мнимые величины. Выяснилось, что самый легкий и короткий путь между двумя истинами вещественной области весьма часто пролегает через область мнимую.
Пенлеве был не только математиком, но и премьер-министром Франции. Его первое пребывание в этой должности продлилось всего девять недель, но за это время ему пришлось разбираться с последствиями революции в России и вступления США в Первую мировую войну, а также заниматься подавлением мятежа во французской армии[32].
Хотя комплексные числа прямо не используются в моей работе, я часто прибегаю к их философским основам. Такого рода шорткаты в чем-то похожи на кротовые норы, позволяющие попасть из одного конца Вселенной в другой, которые так любят создавать писатели-фантасты. В любой ситуации имеет смысл проверить, не спрятано ли где-нибудь зеркало, сквозь которое можно добраться до цели.
В моих математических исследованиях я пытаюсь понять все симметрии, какие только можно построить. Но, как ни странно, тот путь к решению этой задачи, который я нашел, предполагает создание нового объекта, называемого дзета-функцией, который происходит совершенно из другой области математики. Тем не менее это позволило мне взглянуть на мои собственные исследования с новой точки зрения, которой у меня не могло бы быть, если бы я не выходил за пределы мира симметрии. Как я объясню на нашей следующей технической остановке, на которой мы познакомимся с предпринимателем Брентом Хоберманом, пришествие интернета привело к появлению фантастического зеркала, прохождение через которое позволяет обойтись без посредников в самых разнообразных коммерческих сделках.
Иногда кротовую нору, помогающую найти путь к решению, можно обнаружить, просто сменив ландшафт, по которому мы движемся. Когда я захожу в тупик при работе над какой-нибудь математической задачей, я часто слушаю музыку или упражняюсь на виолончели – это помогает моему разуму отвлечься. А когда я возвращаюсь к письменному столу, часто оказывается, что мой взгляд на задачу странным образом изменился. Слушание музыки, перемещение совершенно в другую среду, может быть подобно получению доступа в мир мнимых чисел, в котором, как писал Пенлеве, обнаруживаешь более короткий путь к цели. Вполне имеет смысл поэкспериментировать с имеющимися альтернативными маршрутами – они могут помочь добраться до тайной дверцы, ведущей к новому образу мыслей.
Сегодня мир мнимых чисел является ключом к пониманию целого ряда концепций, которые было бы почти невозможно понять без этого шортката сквозь зеркало. В квантовой физике – физике предельно малого – можно как следует разобраться, только если она выражена в этих мнимых числах. Управлять переменными токами, используемыми в электронике, легче всего, если они описываются при помощи квадратного корня из –1. Еще один яркий пример шортката, который открывают эти числа, можно найти внутри компьютеров, которые помогают сажать самолеты в аэропортах всего мира.
Несколько лет назад мне посчастливилось попасть на диспетчерскую вышку одного из крупных аэропортов Великобритании. Экраны, по которым плясали миниатюрные значки самолетов, создавали ощущение какой-то безумной компьютерной игры. Но я быстро осознал, что в руках операторов находятся жизни многих тысяч людей. Во время посещения диспетчерского пункта мне велели соблюдать полную тишину. Но, когда мне все же удалось поговорить с одним из диспетчеров, отработавшим смену, я был крайне изумлен, узнав, что система, применяемая для посадки самолетов, использует для ускорения вычислений в рамках радарного слежения за прилетающими воздушными судами мнимые числа.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!