📚 Hub Books: Онлайн-чтение книгРазная литератураКак подружить гены в клетках. Коктейль молодости, светящиеся котики, напечатанные органы и другие прелести науки - Ангелина Владимировна Потапова

Как подружить гены в клетках. Коктейль молодости, светящиеся котики, напечатанные органы и другие прелести науки - Ангелина Владимировна Потапова

Шрифт:

-
+

Интервал:

-
+
1 ... 22 23 24 25 26 27 28 29 30 31
Перейти на страницу:
D. (2009). Clinical signifi cance of chimerism. Am J Med Genet C Semin Med Genet. 15C(2), pp. 148–151. doi:10.1002/ ajmg.c.30213. PMID 19378333

10. Wu, J., Platero-Luengo, A., Sakurai, M. et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. 168(3), pp. 473–486. E15, 2017. DOI: https://doi.Org/10.1016/j.cell.2016.12.036.

11. Corr, S.A., Gardner, D.S., Langley-Hobbs, S. et al. (2017). Radiographic assessment of the skeletons of Dolly and other clones fi nds no abnormal osteoarthritis. Sci Rep 7, 15685. https://doi. org/10.1038/s41598-017-15902-8.

12. Hamzelou, J. (2016, September 27). Exclusive: World’s fi rst baby born with new “3 parent” technique. Newscientist. Retrieved from https://www.newscientist.com/article/2107219-exclusive-worlds-first-babyborn-with-new-3-parent-technique/.

13. Wilkinson, B. (2019, April 11). Controversial ‘three-person’ IVF used for baby boy born in Greece. CNN Health. Retrieved from https://edition. cnn.com/2019/04/ll/health/birth-experimental-ivf-greece-scln-intl/index.html.

14. Максимова E. В. Клонирование: моральные дилеммы И Вестник РУДН. Серия: Философия, 2015. № 2.

15. Pattinson, S.D., Caulfi eld, T. Variations and voids: the regulation of human cloning around the world. BMC Med Ethics 5, 9 (2004). https://doi.org/10.1186/1472-6939-5-9.

15. Ma, P., Li, T., Ji, F., Wang, H., Pang, J. (2015, Aug 15). Effect of GABA on blood pressure and blood dynamics of anesthetic rats. Int J Clin Exp Med 8(8): 14296-302. PMID: 26550413; PMCID: PMC4613098. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC4613098/.

Глава 2

1. Hubisz, M.J., Williams, A.L., Siepel, A. (2020). Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph. PLOS Genetics 16(8): el008895. https://doi.org/10.1371/journal.pgen.1008895.

2. Dannemann M., Andrés, A.M., Kelso, J. (2016, January 07). Introgression of Neandertal– and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors. AJHG. 98(1), pp. 22–33. https://doi.Org/10.1016/j.ajhg.2015.ll.015.

3. Simonti, C.N., Vernot, B., Bastarache, L., Bottinger, E., Carrell, D.S. et al. (2016, February 17). The phenotypic legacy of admixture between modern humans and Neandertals. Science. 351(6274), pp. 737–741. DOI: 10.1126/science.aad2149.

4. Rampelli, S.; Schnorr, S.L.; Consolandi, C.; Turroni, S.; Severgnini, M.; Peano, C.; Brigidi, P.; Crittenden, A.N.; Henry, A.G.; Candela, M. Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Curr. Biol. 2015, 25, 1682–1693.

5. Rinker, D.C., Simonti, C.N., McArthur, E. et al. (2020). Neanderthal introgression reintroduced functional ancestral alleles lost in Eurasian populations. Nat Ecol Evol 4, pp. 1332–1341. https://www. nature.com/articles/s41559-020-1261-z.

6. Schaefer, N.K., Shapiro, B., Green, R.E. (2021, July 16). An ancestral recombination graph of human, Neanderthal, and Denisovan genomes. Science. 7(29). DOI: 10.1126/sciadv.abc0776.

7. Mafessoni, F. Encounters with archaic hominins. (2019). Nat Ecol Evol 3, 14–15. https://doi.org/10.1038/s41559-018-0729-6.

8. Colbran, L.L., Gamazon, E.R., Zhou, D. et al. (2019). Inferred divergent gene regulation in archaic hominins reveals potential phenotypic diff erences. Nat Ecol Evol 3, 1598–1606. https://doi. org/10.1038/s41559-019-0996-x.

9. Zeberg H., Kelso J., Pââbo S., The Neandertal Progesterone Receptor, Molecular Biology and Evolution, Volume 37, Issue 9, September 2020, Pages 2655–2660, https://doi.org/10.1093/molbev/ msaall9

10. Khrameeva, E., Bozek, K., He, L. et al. (2014). Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nat Commun 5, 3584. https://doi.org/10.1038/ncomms4584.

11. Trumble, B.C., Finch, C.E. (2019, December). Th e Exposome in Human Evolution: From Dust to Diesel. Th e Quarterly Review of Biology. 94(4). DOI: 10.1086/706768.

12. Gregory, M.D., Kippenhan, J.S., Eisenberg, D.P. et al. (2017, July 24). Neanderthal-Derived Genetic Variation Shapes Modern Human Cranium and Brain. Sci Rep 7,6308. https://doi.org/10.1038/s41598-017-06587-0.

13. Zeberg, H., Pàâbo, S. (2020). Th e major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612. https://doi.org/10.1038/s41586-020-2818-3.

14. Zwir, I., Del-Val, C., Hintsanen, M. et al. (2022). Evolution of genetic networks for human creativity. Mol Psychiatry 27, 354–376. https:// doi.org/10.1038/s41380-021-01097-y.

15. Oliva, M., Munoz-Aguirre, M., Kim-Hellmuth, S., Wucher, V. et al. (2020 Sep 11). Th e impact of sex on gene expression across human tissues. Science, 369(6509):eaba3066. DOI: 10.1126/science. аЬаЗОбб. PMID: 32913072; PMCID: PMC8136152.

16. Gershoni, M., Pietrokovski, S. (2017). Th e landscape of sex-diff erential transcriptome and its consequent selection in human adults. BMC Biol 15, 7. https://doi.org/10.1186/sl2915-017-0352-z.

17. Joel, D., Berman, Z., Tavor, I., Wexler, N. et al. (2015, November 30). Sex beyond the genitalia: Th e human brain mosaic. PNAS. 112 (50) 15468-15473. https://doi.org/10.1073/pnas.1509654112.

18. Dubey, N.. Hoff man, J.F., Schuebel, K., Yuan, Q. et al (2017, August). The ESC/E(Z) complex, an eff ector of response to ovarian steroids, manifests an intrinsic diff erence in cells from women with premenstrual dysphoric disorder. Mol Psychiatry. 22(8): 1172–1184. DOI: 10.1038/mp.2016.229. Epub 2017 Jan 3. PMID: 28044059; PMCID: PMC5495630.

19. Timby, E. (2011). Allopregnanolone eff ects in women: clinical studies in relation to the menstrual cycle, premenstrual dysphoric disorder and oral contraceptive use. Doctoral thesis. Umeâ: Umeâ University, p. 81. http://umu.diva-portal.org/smash/record.jsf?lang uage=sv&pid=diva2%3A458846&dswid=2768.

20. Ganna, A., Verweij, K.J.H., Nivard, M.G. et al. (2019, August 30). Largescale GWAS reveals insights into the genetic architecture of same-sex sexual behavior. Science, 365(6456). DOI: 10.1126/science. aat7693.

21. Male homosexuality and maternal immune responsivity to the Y-linked protein NLGN4Y. Bogaert A.F., Skorska M.N., Wang C. et al. (2017) PNAS, 115 (2) 302–306 DOI: https://doi.org/10.1073/ pnas.1705895114

22. Anttila V., Bulik-Sullivan B., Finucane H.K. et al. (2018, June 22). Analysis of shared heritability in common disorders of the brain. Science, 360(6395) DOI: 10.1126/science.aap8757.

23. Wray, N.R., Ripke, S., Mattheisen, M. et al. (2018). Genome-wide association analyses identify 44 risk variants and refi ne the genetic architecture of major depression. Nat Genet 50, 668–681. DOI: https://doi.org/10.1038/s41588-018-0090-3.

24. Gandal M., Haney J.R… Paricshak N.N. et al. (2018, February 9). Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 359(6376); pp. 693–697. DOI: 10.1126/science.aad6469.

25. Brown, N. (2019, December 12). Largest study of its kind reveals that many psychiatric disorders arise from common genes. Press release. Massachusetts General Hospital. Retrieved from https:// www.massgeneral.org/news/press-release/largest-study-of-its-kind-revealsthat-many-psychiatric-disorders%20-arise-from-common-genes.

26. Huckins, L.M., Dobbyn, A., Ruderfer, D.M. et al. (2019). Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nat Genet 51,659–674. https://doi. org/10.1038/s41588-019-0364-4.

27. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet 50, 912–919 (2018). https://doi.org/10.1038/s41588-018-0152-6.

28. Lam, M., Trampush, J.W., Yu, J. at al. Large-Scale Cognitive GWAS Meta-analysis Reveals Tissue-Specifi c Neural Expression and Potential Nootripic Drug Targets. Cell 21(9), pp. 2597–2613. DOI: https://doi.Org/10.1016/j.celrep.2017.ll.028.

29. McMains, V. (2021, June 21). Genetic cause of neurodevelopmental disorder discovered. University of Maryland School of Medicine. Retrievedfromhttps://www.medschool.umaryland.edu/news/2021/ UM-School-of-Medicine-Researchers-Discover-Genetic-Cause-of-Neurodevelopmental-Disorder.html.

30. Cuellar-Partida, G., Tung, J.Y., Eriksson, N.. Albrecht, E., et al. (2021 January 1). Genome-wide association study identifi es 48 common genetic variants associated with handedness. Nat Hum Behav.; 5(1): 59–70.

1 ... 22 23 24 25 26 27 28 29 30 31
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?