Онтогенез. От клетки до человека - Джейми Дейвис
Шрифт:
Интервал:
Природа генов, мутации в которых приводят к нейрокристопатии, подчеркивает один важный момент, касающийся связи между развитием, генетикой и заболеваниями. В популярных статьях и даже в некоторых научных работах нередко встречается фраза «ген такой-то болезни». Если заболевание выражается в утрате или нарушении определенной структуры, например лица, это выражение создает впечатление, что нормальный (не несущий мутацию) ген отвечает за создание этой структуры. Однако, если рассмотреть белки, кодируемые генами, мутации в которых вызывают нейрокристопатию, станет ясно, что они являются частью сложнейших многокомпонентных механизмов, выполняющих такие задачи, как управление клеточными миграциями. Эти задачи решаются для другого структурного уровня и для другого пространственного масштаба (лицо по сравнению с ними – слишком сложная и крупная структура). Белок Treacle (как бы мы ни напрягали воображение) вовсе не формирует лицо. Он всего лишь играет некоторую роль в обеспечении эффективного синтеза рибосом – молекулярных «фабрик белка» (глава 1). Эта простая биохимическая задача не имеет прямого отношения к созданию лица. Однако при нарушении работы этого белка в клетках нервного гребня головы возникает резкая нехватка рибосом, что приводит к их стрессу и гибели.[136] Оставшихся клеток недостаточно для формирования нормального лица. Этот дефект и создает иллюзию того, что белок Treacle «отвечает» за формирование лица, в то время как на самом деле он только способствует образованию рибосом.
Общий вывод из примера с белком Treacle в равной мере справедлив и для подавляющего большинства других случаев: считать, что функция гена заключается в создании какой-то конкретной структуры тела, – это серьезное заблуждение. Если бы выдумки на генетическую тему ограничивались научной фантастикой, все было бы хорошо, но искаженное представление о том, что именно делают гены, приводит в том числе к необоснованному мнению о том, что спроектировать внешний вид организмов или их частей очень легко – достаточно поиграть с несколькими «дизайнерскими генами». На самом деле все части тела созданы сетью взаимодействующих белков, каждый из которых кодируется определенным геном. Если мы хотим узнать, как это происходит и как можно – к добру или к худу – что-то в этом изменить, то мы должны понять развитие человека не на уровне отдельных генов, а на уровне взаимодействующих сетей.
В качестве примера клеточных миграций я выбрал миграцию клеток нервного гребня, но это далеко не единственный тип мигрирующих клеток. На большие расстояния перемещаются клетки, дающие начало сперматозоидам и яйцеклеткам (глава 10), а также клетки, образующие кровеносную систему (глава 9). Огромное количество типов клеток мигрирует на короткие расстояния, организуясь в тесные группы, формирующие кости и части органов тела (глава 12). В ходе развития нервной системы небольшие группы клеток, мигрируя, создают длинные тонкие отростки (аксоны и дендриты), соединяющие нервные клетки друг с другом, а также с рецепторами и мышцами (глава 13). Защитные клетки иммунной системы способны мигрировать к очагам инфекции даже во взрослом организме (глава 17). Есть и печальные примеры: многие раковые клетки снова активируют механизмы миграции и распространяются из исходной опухоли в другие места, образуя метастазы. Существенная часть интенсивных исследований механизмов клеточного движения при нормальном развитии финансируется фондами изучения рака в надежде на то, что понимание нормальной миграции клеток поможет объяснить, как можно остановить опасный процесс метастазирования раковых клеток. Это лишь один из примеров того, как «чисто теоретические» эмбриологические исследования оказываются тесно связаны с решением насущных проблем, затрагивающих вопросы жизни и смерти конкретных людей.
Человек – ходячий шедевр водопроводных работ.
Клетки – объекты очень малого размера: как правило, около сотой доли миллиметра. Белки, которые участвуют во внутриклеточных реакциях, еще меньше: их радиус – примерно десятимиллионная доля миллиметра, а молекулы воды, в которой растворены белки, намного меньше их самих. На молекулярном уровне содержимое клетки находится в постоянном движении. Это не имеет никакого отношения к тому факту, что клетки живые. Движение, о котором я говорю, с тем же успехом продолжится и в мертвой клетке, впрочем, как и в теплом супе. Оно вытекает из основных законов физики. При любой температуре выше абсолютного нуля молекулы совершают случайные колебания и движения (температура – просто мера этой энергии движения, усредненная по популяции молекул). Движущиеся молекулы иногда сталкиваются, а затем отскакивают друг от друга. Если крупные молекулы, например белки, растворены в воде, молекулы воды сталкиваются и с ними, сообщая им часть своего импульса, поэтому молекулы белков тоже находятся в постоянном хаотичном движении.
Этот эффект можно наблюдать и на более крупных и тяжелых объектах, чем белки, например на пылинках. Римский поэт и ученый Лукреций еще в 60 г. до н. э. предположил, что хаотический «танец» частиц дыма в воздухе может быть связан с быстрым движением «атомов» (именно так он их назвал) – невидимые простым глазом, они случайно сталкиваются с частицами.[137] В жидкостях этот эффект впервые наблюдал Ян Ингенхауз в 1785 г., а 42 года спустя его вновь описал шотландский ботаник Роберт Броун. В его честь движение растворенных или взвешенных в жидкости частиц называют «броуновским» (что несколько несправедливо по отношению к Ингенхаузу), а открытие того, что это движение возникает из-за столкновения с невидимыми атомами или молекулами, обычно приписывают Эйнштейну (что несколько несправедливо по отношению к Лукрецию).
Броуновское движение имеет большое значение для развивающегося эмбриона, потому что хаотичное движение молекул является автоматическим механизмом транспортировки растворенных веществ (пищи, кислорода и «стройматериалов») туда, где они нужны. Ферменту, которому требуется конкретное вещество, остается только ждать, когда хаотическое движение приведет это вещество в контакт с ним. Этот механизм хорошо работает на небольших расстояниях, но, учитывая, что хаотично движущиеся молекулы часто меняют направление движения, при увеличении расстояния эффективность транспортировки падает. Для растущего эмбриона это очень существенно: поскольку пища и кислород поступают через стенки матки, клетки, находящиеся глубоко внутри развивающегося организма, рискуют остаться без необходимых веществ и погибнуть голодной смертью. Максимальное расстояние, на котором обычная клетка млекопитающего в плотной ткани может получать питательные вещества за счет случайной тепловой диффузии, в несколько десятков раз превышает диаметр клетки (некоторые специализированные клетки, в частности клетки скелета и связанных с ним тканей, могут находиться дальше от источника питательных веществ). Эмбриону бо́льшего размера – а центр туловища взрослого человека лежит на расстоянии примерно в тридцать тысяч клеточных диаметров от кожи – необходимо разработать систему эффективного транспорта питательных вещества в глубоко лежащие ткани. Такая система должна подводить питательные вещества достаточно близко к каждой клетке, чтобы они могли преодолеть оставшееся расстояние за счет хаотической тепловой диффузии. В организме человека и других позвоночных проблема решается за счет циркуляции жидкости-носителя – крови – по тончайшим трубочкам, расходящимся по всем уголкам тела.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!