Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио
Шрифт:
Интервал:
Вы говорите, что задачу поставил мой брат; так и есть, однако следует ли из этого, что он получил ее решение? Отнюдь нет. Когда он предложил мне рассмотреть задачу (ибо я первым задумался над ней), никто из нас, ни тот ни другой, не сумел ее решить, мы отчаялись и считали, что она не имеет решения, пока господин Лейбниц не опубликовал в Лейпцигском журнале за 1690 год, стр. 360, заметку, что решил задачу, однако решения не представил, словно бы давал время другим ученым, и именно это побудило нас – и брата, и меня – заново взяться за нее.
Сначала Иоганн бессовестно приписывает себе даже саму постановку задачи, а затем с нескрываемым злорадством продолжает.
Старания моего брата ни к чему не привели, мне же повезло больше, ибо я обладаю мастерством (я говорю не хвастаясь, к чему скрывать истину?), позволяющим найти полное решение… Да, безусловно, это потребовало от меня усердных занятий, лишивших меня остатка ночного сна… однако наутро, преисполнившись радости, я бросился к брату, который все так же безуспешно бился над своим гордиевым узлом, но у него ничего не получалось, поскольку он вслед за Галилеем считал, будто цепная линия – это парабола. «Стой! Стой! – говорю я ему. – Не терзай себя больше попытками доказать, что цепная линия тождественна параболе, поскольку это совершенно неверно»… Но затем вы поражаете меня выводом, что мой брат будто бы нашел метод решения задачи… неужели вы и вправду думаете, спрашиваю я вас, что если бы мой брат решил упомянутую задачу, он был бы столь многим мне обязан, что даже не заявил, что входит в число решивших задачу, уступив мне славу и дав в одиночестве выйти на сцену в качестве первого решившего вместе с господами Гюйгенсом и Лейбницем?
Если вам нужны были доказательства, что математики тоже люди, вот они. Однако семейные распри отнюдь не мешали различным Бернулли получать великолепные математические результаты. В первые же годы после эпизода с цепной линией Якоб, Иоганн и Даниил Бернулли (1700–1782) не только решили похожие задачи о провисающих веревках, но и внесли уточнения в теорию дифференциальных уравнений в целом и решили задачу о движении снарядов в сопротивляющейся среде.
История о цепной линии открывает перед нами еще одну сторону могущества математики: математические решения есть даже у тривиальных на первый взгляд физических задач. Кстати, форма цепной линии и в наши дни приводит в восторг миллионы посетителей знаменитых Ворот Запада в Сент-Луисе, в штате Миссури. Это сооружение, ставшее символом города и штата, финско-американский архитектор Ээро Сааринен (1910–1961) и германо-американский инженер-строитель Ханскарл Бандель (1925–1993) спроектировали в форме, близкой к очертаниям перевернутой цепной линии.
Ошеломляющие успехи физики в открытии математических законов, которые управляют поведением мироздания в целом, заставили задаться неизбежным вопросом, не лежат ли подобные принципы также в основе биологических, общественных или экономических процессов. Математикам стало интересно, служит ли математика языком только природы – или человеческой природы тоже? И если подлинно универсальных принципов все же не существует, можно ли при помощи математического инструментария хотя бы моделировать, а следовательно, и объяснять общественное поведение? Поначалу многие математики были убеждены, что «законы», основанные на той или иной версии математического анализа, позволят точно предсказать все события в будущем, и большие, и малые. Такое мнение разделял, например, великий физик и математик Пьер-Симон Лаплас (1749–1827). Пять томов «Mécanique céleste» («Небесной механики») Лапласа предлагают первое полное, хотя и приближенное, решение задачи о движении планет и спутников Солнечной системы. Кроме того, именно Лаплас ответил на вопрос, который ставил в тупик самого Ньютона: почему Солнечная система так стабильна? Ньютон полагал, что планеты из-за взаимного притяжения должны неминуемо упасть на Солнце или разлететься в свободное пространство – и поэтому нужна длань Господня, чтобы Солнечная система осталась целой и невредимой. Лаплас придерживался несколько иных представлений. Он не полагался на вмешательство самого Господа, а просто доказал математически, что Солнечная система стабильна на протяжении периодов времени гораздо более длительных, чем предсказывал Ньютон.
Чтобы решить эту сложную задачу, Лаплас ввел новый математический инструмент – так называемую теорию возмущений, позволявшую вычислить совокупный эффект множества мелких возмущений орбиты каждой планеты. И наконец, в довершение всего, Лаплас предложил одну из первых моделей зарождения Солнечной системы как таковой – согласно его небулярной теории, Солнечная система образовалась из сгустившегося газового облака.
Если учесть все эти поразительные достижения, не приходится удивляться, что в своем «Опыте философии теории вероятностей» Лаплас отважно провозгласил следующее (Laplace 1814, перевод на английский Truscot and Emory 1902).
Любые события, даже те, которые по незначительности своей не должны, казалось бы, подчиняться великим законам природы, все равно определяются ими с той же необходимостью, что и обращение Солнца. Поскольку раньше было неизвестно, что за узы объединяют такие события с системой мироздания в целом, мы на свой страх и риск считали, что они зависят от конечных причин… Следовательно, мы должны считать нынешнее состояние Вселенной результатом ее состояния в прошлом и причиной грядущего. Нужно учесть, что если некий разум сможет охватить все силы, движущие природой, и взаимное расположение всех сущностей, которые ее составляют, и этот разум окажется достаточно велик, чтобы подвергнуть эти данные анализу, он в тот же миг сумеет рассчитать по одной и той же формуле все движения как величайших тел во Вселенной, так и легчайшего атома, и для него не останется ничего неопределенного, и перед взором его предстанет не только прошлое, но и будущее. Человеческий интеллект при всем совершенстве, которое он сумел придать астрономии, лишь бледное подобие такого разума.
Если вам интересно, уточню, что когда Лаплас говорил об этом гипотетическом «высшем разуме», то имел в виду совсем не Бога. В отличие от Ньютона и Декарта, Лаплас был человек неверующий. Когда он подарил экземпляр «Небесной механики» Наполеону Бонапарту, тот, слышавший, что в этом труде нет ни одного упоминания о Боге, заметил: «Месье Лаплас, говорят, вы написали эту объемистую монографию об устройстве Вселенной, но ни разу не упомянули ее творца». На что Лаплас тут же ответил: «Я не нуждаюсь в подобной гипотезе». Это замечание позабавило Наполеона, и он пересказал его математику Жозефу-Луи Лагранжу; тот воскликнул: «Ах! Это прекрасная гипотеза, она многое объясняет». Но на этом история не кончается. Услышав, что сказал Лагранж, Лаплас сухо заметил: «Эта гипотеза, сир, на самом деле вообще все объясняет, но не позволяет ничего предсказать. Я же как ученый обязан обеспечивать вас трудами, позволяющими делать предсказания».
Наступил ХХ век, и достижения квантовой механики, теории субатомного мира, показали, что ожидать полностью детерминистской Вселенной было бы слишком оптимистично. Современная физика, по сути дела, доказала, что предсказать результат каждого эксперимента невозможно в принципе. Скорее, теория предсказывает вероятности разных результатов. Положение в общественных науках, очевидно, еще сложнее из-за огромного количества взаимосвязанных элементов, многие из которых в лучшем случае крайне неопределенны. Ученые XVII века довольно скоро обнаружили, что если речь идет об общественных процессах, то поиск точных универсальных законов наподобие закона всемирного тяготения Ньютона изначально обречен на провал. Некоторое время казалось, что если ввести в уравнение все сложности человеческой натуры, то нельзя делать вообще никаких прогнозов. Если задействовано множество индивидуумов в масштабах всего населения, положение становится еще более безнадежным. Однако некоторые гениальные мыслители не стали отчаиваться, а разработали новый арсенал новаторских математических инструментов – статистику и теорию вероятностей.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!