Приспособиться и выжить! ДНК как летопись эволюции - Шон Кэрролл
Шрифт:
Интервал:
Теперь вас не удивляет, что черные мыши, черные птицы и черные ящерицы имеют мутации в одном и том же гене? Или что некоторые виды животных имеют одну и ту же замену в гене MC1R?
А как обстоит дело с ископаемыми генами? Легко ли они образуются? Они образуются очень легко. В то время как для изменения функции гена обычно существует лишь несколько возможностей, для нарушения функции гена таких возможностей множество. Примерно 5 % всех точечных мутаций приводят к прерыванию последовательности гена. Кроме этих простых «опечаток» вставки и делеции не кратного трем числа оснований также приводят к нарушению считывания генетической информации. Небольшие вставки и делеции встречаются достаточно часто. На основании этих данных можно сказать, что испортить ген примерно в 50 или 100 раз «легче» (то есть вероятнее), чем произвести специфическую точечную мутацию. Применяем уже знакомую нам арифметику и получаем, что одно животное из примерно 2 млн родится с новым потенциальным ископаемым геном. Из данных табл. 6.2 видно, что частота возникновения ископаемых генов и гораздо более специфических мутаций зависит от скорости размножения.
Таблица 6.2. Частота появления похожих мутаций в одном и том же гене за 1 млн лет
А теперь вдумайтесь: по оценкам ученых, на Земле сегодня существует около 10 тыс. видов птиц. Из цифр в таблице абсолютно ясно, что одни и те же мутации повторяются у всех видов птиц, за исключением самых редких, и возникали несчетное количество раз у их вымерших предков.
Но такая картина вовсе не ограничена миром птиц. Многие другие группы животных имеют сравнимую численность популяции и скорость воспроизводства, а некоторые даже более плодовиты. Мы не будем вновь заниматься вычислениями, чтобы удостовериться, что в гигантских популяциях рыб, насекомых или ракообразных некоторые мутации повторяются еще чаще.
Итак, мутации происходили и происходят в избытке. Возникает другой вопрос: останется ли в популяции новая, потенциально «полезная» мутация или исчезнет, потеряется? Здесь в дело вступает естественный отбор.
В четырех предыдущих главах мы говорили о сохранении, расширении, модификации или разрушении заключенной в ДНК информации в результате действия или бездействия естественного отбора. Я рассказывал о возможной судьбе генов в трех разных ситуациях. В главе 3 мы познакомились с действием очищающего отбора, сохраняющего информацию ДНК на протяжении миллиардов лет в условиях постоянного потока мутаций. В главе 4 мы оценили положительную роль естественного отбора в удвоении генов и тонкой настройке генов, в результате чего на основе «старых» генов создается новая информация и новые признаки. В главе 5 мы увидели, что в отсутствие естественного отбора, сохраняющего гены, текст ДНК разрушается и стирается. А в данной главе мы проследили за тем, как одинаковые или эквивалентные изменения в ДНК вновь и вновь отбираются (или допускаются, если естественный отбор ослабевает).
На фундаментальном уровне, то есть на уровне ДНК, отбор контролирует относительную успешность распространения альтернативных форм отдельных генов. Допустим, мы имеем две последовательности ДНК, A и B, различающиеся по одной или нескольким позициям. В зависимости от условий отбора существуют три варианта развития событий. Если последовательность A лучше обеспечивает выживание или репродуктивный успех организма, чем B, преимущество оказывается на стороне A. Напротив, если последовательность B обеспечивает лучшие показатели выживаемости и воспроизводства по сравнению с последовательностью A, преимущество получает B. Третья возможность заключается в том, что ни одна из последовательностей не дает преимущества или что они определяют признак, который уже не важен для выживания и воспроизводства. В этом случае частота встречаемости вариантов A и B будет колебаться случайным образом — «дрейфовать».
Таким образом, каждую новую мутацию ожидает один из этих трех вариантов развития событий. Она может активно сохраняться, активно удаляться или оставаться без внимания со стороны естественного отбора. Например, если у птицы есть ген коротковолнового опсина с триплетом AGC в положениях 268–270, она, скорее всего, видит в фиолетовом диапазоне спектра. Теперь рассмотрим девять вариантов изменения этой последовательности в результате мутаций каждого из трех оснований триплета.
Не будь естественного отбора, в опсинах птиц существовали бы все варианты замен. Однако исследование 45 видов птиц из 35 семейств показало, что у всех видов в данном положении находится либо серин, либо цистеин. Вероятность того, что это результат простой случайности, пренебрежимо мала. Значит, в ходе эволюции птиц все другие возможные изменения в этой позиции вновь и вновь отсеивались. Такова сила естественного отбора.
Статистический анализ помогает выявить неслучайный характер последовательностей ДНК, но математика — не единственный способ понять, как действует естественный отбор. Лабораторные эксперименты и изучение физиологии видов дают дополнительную информацию, которая в сочетании с текстом ДНК позволяет составить более полную картину. В данном случае нам известно, что птицы с цистеином в определенном положении способны видеть в УФ-диапазоне спектра, тогда как птицы с серином в этой позиции не воспринимают ультрафиолетовый свет. Единственным объяснением того, что на этом месте стоит только серин или цистеин, является влияние естественного или полового отбора. А лучшее объяснение многократного появления цистеина в этой позиции — что время от времени возникают сходные условия, при которых птицам из разных видов, семейств и отрядов становится выгодно видеть в ультрафиолетовом свете.
Точно так же лучшим объяснением конвергентной эволюции трихроматического зрения у обезьян ревунов, рибонуклеазы у жвачных животных, темной окраски у птиц, млекопитающих и рептилий, антифриза у рыб и мощных нейротоксинов у различных животных является сходство условий отбора, способствующего появлению похожих признаков.
Хотя преимущества антифриза и смертоносных токсинов, убивающих добычу, очевидны, эволюция этих способностей показывает, что отбор работает с тем материалом, который есть под рукой. Отбор благоприятствовал появлению двух практически идентичных вариантов антифриза из двух совершенно непохожих фрагментов ДНК, а также смертельных токсинов из разных исходных материалов. Толчком к изобретению здесь, безусловно, послужила необходимость, но закрепились эти изобретения благодаря совокупному действию случайных мутаций и естественного отбора.
Однако если в результате изменения образа жизни какой-либо признак становится ненужным, естественный отбор остается слеп к мутациям в соответствующих генах. Мутации, разрушающие гены, неизбежны и могут появиться в любом месте текста ДНК. Мы видели, что ген опсина SWS разрушался не менее пяти раз в разное время и пятью разными способами у разных позвоночных животных. У дрожжей трижды происходило разрушение семи генов, составляющих путь метаболизма галактозы. Похожие условия (отсутствие необходимости) снова и снова приводили к сходным результатам.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!