Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - Бен Принг
Шрифт:
Интервал:
Это и есть расширенный учитель. Это учительская профессия, защищенная технологией, а не замененная ею. На самом деле, идея учителя, замещенного «роботом-тьютором в облаке», Ластеру видится обреченной на провал. «Роль учителя остается центральной, если не еще более важной в технологическую эпоху. Но это будет роль ментора. Это роль распространителя мудрости. Учитель, как тот, кто требует от вас освоить уровень один и уровень два с помощью механической зубрежки, уйдет в прошлое. Вот на что повлияют технологии. У учителей светлое будущее, поскольку учительство по своей природе социально: по мере того как вы продвигаетесь вверх по уровням, классам, в университет и дальше, действительно от учителя зависит мудрое руководство, помощь в формировании человека, которым вы хотите быть. ALEKS знает свое место и служит учителю так, как служат электронные динамические таблицы блестящему финансисту».
Лидеры бизнеса и технологий, находящиеся в поисках уроков по расширению, могут многое узнать от McGraw-Hill Education.
Рисунок 9.1. Пространство для обучения с ALEKS
• Будьте готовы бороться со страхом ботов. Будущее работы учителей многому нас научит. Мы не стоим перед лицом страшного будущего роботов, в котором наших детей будут учить боты. Программы-боты будут помогать, но не замещать учителей. В вашем собственном бизнесе следуйте критериям из главы 7, чтобы определить, какой тип работы стоит автоматизировать, а затем нацеливайтесь на работу, которая должна остаться у людей, но расширена новыми технологиями, такими как ALEKS. Вам нужно быть готовыми объяснять, как это расширение улучшит жизнь многих людей.
• Ищите возможности там, где условие «в реальном времени» имеет реальное значение. Интеллектуальные системы предлагают как чистую мощность обработки, так и скорость. В контексте образования быстрота значит много. Как заметил Ластер, «когда студенты занимаются с ALEKS и Connect and LearnSmart, анализ происходит практически моментально. Нет ни одного учителя, который мог бы так быстро давать оценки». В одних случаях скорость значит больше, чем в других, но наши ожидания незамедлительного вознаграждения, отклика сегодня выше, чем когда-либо. Amazon и другие много вкладывают в то, чтобы свести временные отрезки в цепи поставок практически к нулю. Представьте, что скорость могла бы значить в вашем бизнес-контексте. Могло бы расширение возможностей тех, кто обрабатывает заявления на ссуды, повысить удовлетворенность клиента и увеличить прибыль, разгоняясь с помощью технологии? Какие преимущества получите, если ваши андеррайтеры будут срабатывать практически молниеносно? Дело здесь в том, что интеллектуальные системы освобождают время для более ценной работы и повышают производительность – и это серьезные результаты расширения. Велики шансы, что именно сейчас вы сидите на одной из этих возможностей.
• Цельте высоко и будьте смелыми. Они пришли из разных отраслей и разработали разнообразные платформы с ИИ, но практически все создатели цифровой экономики, с которыми мы встречались, разделяли ту же точку зрения. Ни один из них не говорил о сломе конкурентов или о том, чтобы разбогатеть. Все говорили об использовании технологии для решения действительно важных проблем в образовании, здравоохранении, сельском хозяйстве и дюжине других индустрий. Они признали, что интеллектуальные системы – средство, а не цель и что создание ПО без особенной на это причины – потеря времени и денег. Как говорит Ластер: «Да, мы за программное обеспечение, и за данные, но мы также продолжаем быть за курирование, за педагогику, за то, как протекает обучение, за формирующее оценивание».
Мы не настолько наивны, чтобы ожидать, что произойдет что-то хорошее, когда вы войдете в свой директорский кабинет и скажете: «Нам не нужно думать о том, чтобы зарабатывать, давайте просто инвестировать в то, чтобы сделать мир лучше». Честно говоря, это откровенно плохая стратегия. Одна из вещей, которой можно научиться у McGraw-Hill Education, – это быть смелыми, дерзкими внутри контекста своего бренда и услуг, которые продаете. Это и есть честная игра для расширяющих решений в цифровой экономике.
Комбинация умных рук и умных роботов со временем становится все более заметной, и не только потому, что машины постоянно становятся умнее (как мы рассказывали ранее в этой книге), но умнеет и человек. Отличным примером служит один из наиболее широко известных моментов этих новых взаимоотношений человека и машины, когда чемпион по го Ли Седоль соревновался с интеллектуальной машиной AlphaGo от Google.
В их матче в 2016 году AlphaGo сделал ход – ход 37, – удививший Седоля (и всех комментаторов-экспертов), который, по сути, был расценен командой Google как ошибка. Оказалось, однако, что это победный ход во второй игре в серии из пяти игр. В четвертой игре ход сделал Седоль – ход 78, – который удивил AlphaGo, поскольку, как говорит об этом Демис Хассабис (Demis Hassabis), сооснователь DeepMind – команды, сотрудничающей с Google, «AlphaGo не думал, что человек когда-нибудь так сыграет»3. С этим 78-м ходом игру выиграл Седоль.
AlphaGo продолжал выигрывать в решающей пятой игре, и Седоль позднее вспоминал, что не смог бы снова сделать тот 78-й ход, хотя и играл против AlphaGo: машина «открыла глаза» новым способам ведения игры. Опыт Седоля при этом все-таки был расширен: через это взаимодействие с машиной он стал умнее и сложнее.
Машина как коуч
Парируя той точке зрения, что машины заполнят большой сектор устаревшей буржуазной рабочей силы, Макс Янкелевич (Max Yankelevich), основатель и генеральный директор разработчика умной автоматизации процессов WorkFusion, видит впереди намного более сложное будущее. Как он сказал нам: «Комбинация человек плюс ИИ дает в результате три… Наши клиенты не стремятся избавиться от людей; на самом деле они хотят подтолкнуть их выше, к более результативной деятельности, которая требует большего напряжения ума. Они видят в ИИ возможность продвинуть своих людей выше в этой интеллектуальной массе, где они дают предприятию больший результат. Вот как мы видим эволюцию вещей».
Так как AlphaGo сделал Ли Седоля более опытным игроком в го, машины, работающие на передовой на предприятиях бок о бок с нами, сделают нас лучше в том, что делаем мы. И не только в элитной работе, такой как доктора и юристы, но и в более прозаичных, негламурных должностях, занимаемых людьми в миллионах офисах по всему миру: в работе по обработке заявлений на выплату страховки и клиентских жалоб, в работе по доставке прибора А из пункта В в пункт С.
Программное обеспечение WorkFusion, используемое предпринимательскими фирмами для дигитализации процессов, таких как адаптация клиента, проведение сделки и обработка заявлений, автоматизирует широкий круг рутинной интеллектуальной работы через ротобизацию и машинное обучение – в WorkFusion это называют «когнитивная автоматика». Роботизированное оборудование автоматизирует работу, выполняющуюся исключительно по правилам: работа с унаследованными приложениями, перемещение данных из одной системы в другую; когнитивная, или познавательная, автоматика берется и за оценочную работу, имеющую дело с более сложными, неструктурированными данными. Программное обеспечение учится с помощью исторических данных и «наблюдая», как в реальном времени работники категорируют и извлекают главное из неструктурированных данных. Сначала люди контролируют результаты работы WorkFusion, но по мере того, как число повторяющихся процессов растет с сотен до тысяч, программное обеспечение может начинать выступать автономно и автоматически выделять исключения, которым требуется полноценное человеческое суждение. Как говорит Янкевич: «Перевод в автоматический режим касается объемной, рутинной работы, в то время как человек обращается к более интересной и более сложной работе, снижая ее общий объем».
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!