Нереальная реальность. Путешествие по квантовой петле - Карло Ровелли
Шрифт:
Интервал:
Как вычисляется эта вероятность? Вспомним фейнмановскую сумму по путям, которую я описывал, когда рассказывал о квантовой механике. Вероятности в квантовой гравитации вычисляются таким же способом – путем рассмотрения всех возможных «траекторий», имеющих те же граничные условия. Поскольку мы включаем в рассмотрение динамику пространства-времени, это означает рассмотрение всех возможных пространств-времён, имеющих такую же границу, как у нашей коробки.
Квантовая механика предполагает, что между начальной границей, через которую два шара входят в коробку, и конечной границей, где они выходят, нет ни определенного пространства-времени, ни определенных траекторий шаров. Имеется только квантовое «облако», в котором сосуществуют все возможные пространства-времена и все возможные траектории. Вероятность увидеть шары выходящими одним или другим способом можно рассчитать, суммируя по всем возможным пространствам-временам.
Если квантовое пространство имеет структуру спиновой сети, то какую структуру будет иметь пространство-время? На что похожи упомянутые пространства-времена, которые должны учитываться в расчетах?
Это должны быть истории спиновой сети. Представьте, что вы берете граф спиновой сети и двигаете его: каждый узел паутины прочертит линию, подобно шарам на рис. 7.1, а каждое ребро графа, двигаясь, рисует поверхность (например, движущийся отрезок рисует прямоугольник). Но есть и кое-что еще: узел может разделиться на два или более узла, так же как частица может распасться на две или более частицы. И наоборот, два или более узла могут объединиться в один. Таким образом, эволюционирующий граф порождает рисунок, подобный тому, что представлен на рис. 7.2.
Изображение, представленное справа на рис. 7.2, – это спиновая пена. Пена – потому что она состоит из поверхностей, которые встречаются вдоль линий, которые, в свою очередь, встречаются в вершинах, что напоминает пену из мыльных пузырей (рис. 7.3). Это спиновая пена – поскольку поверхности этой пены несут спины аналогично ребрам графа, эволюцию которых они описывают.
Рис. 7.2. Эволюционирующая спиновая сеть: три узла объединяются в один, а затем вновь разделяются. Справа – спиновая пена, представляющая этот процесс
Рис. 7.3. Пена из мыльных пузырей
Для расчета вероятности процесса надо просуммировать по всем возможным спиновым пенам внутри коробки, имеющим такую же границу, как в рассматриваемом процессе. Граница спиновой пены – это спиновая сеть с находящейся в ней материей.
Уравнения петлевой теории гравитации выражают вероятность процесса через суммы по спиновым пенам в заданных границах. На этом пути, в принципе, возможно вычислить вероятность любого физического события[106].
Рис. 7.4. Вершина спиновой пены. С разрешения Грэга Игана
На первый взгляд этот способ выполнения расчетов в квантовой гравитации, основанный на спиновой пене, кажется очень сильно отличающимся от обычных способов, которыми делаются вычисления в теоретической физике. Нет заданного пространства, нет заданного времени, а спиновая пена кажется объектом, чрезвычайно далеким от, скажем, частиц Стандартной модели. Однако в действительности есть очень сильное сходство между расчетами на основе спиновой пены и теми, что используются в Стандартной модели. Фактически здесь даже более чем сходство: техника спиновой пены – это на самом деле красивое объединение двух основных методов вычислений, используемых в контексте Стандартной модели – фейнмановских диаграмм и решетчатого приближения.
Фейнмановские диаграммы используются, например, для расчета процессов, в которых доминируют электромагнитные и слабые силы. Фейнмановская диаграмма представляет последовательность элементарных взаимодействий между частицами. На рис. 7.5 приведен пример, представляющий взаимодействия двух частиц или двух квантов поля. От левой частицы отделяются две другие частицы, одна из них, в свою очередь, распадается на две частицы, которые затем вновь объединяются и сливаются с правой частицей. Эта диаграмма изображает историю квантов в полях.
Рис. 7.5. Фейнмановская диаграмма
Решетчатое приближение используется, когда взаимодействие сильное и картина на уровне частиц становится неэффективной для описания физических процессов, например при расчете сильного взаимодействия между кварками внутри атомного ядра. Решетчатая техника строится на аппроксимации непрерывного физического пространства с помощью решетки, или сетки, как на рис. 7.6. Эта сетка рассматривается не как точное описание пространства, но лишь как приближение наподобие того, что используют инженеры, когда рассчитывают упругость моста, аппроксимируя свойства бетонных конструкций по методу конечных элементов. Эти два метода выполнения вычислений – фейнмановские диаграммы и решетка – самые эффективные техники в квантовой теории поля.
Рис 7.6. Сетка, аппроксимирующая физическое пространство-время
В квантовой гравитации происходит нечто очень красивое: эти два метода выполнения вычислений становятся одним и тем же. Пространственно-временная пена, изображенная на рис. 7.2 и используемая для расчета физических процессов в квантовой гравитации, может быть интерпретирована и как фейнмановская диаграмма, и как вычисление на решетке[107]. Таким образом, эти две техники вычислений, используемые в Стандартной модели, оказываются частными случаями единой техники – суммирования по спиновой пене квантовой гравитации.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!