Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос
Шрифт:
Интервал:
Теперь проанализируем утверждение 2. Если Y.Y. не был в Оксфорде в 1920 году, то утверждение 2 не дает никаких данных насчет порядка выбора, а значит, мы можем считать, что Y.Y. не был в Оксфорде. А если никто не одалживал Калибану зонтик, утверждение избыточно. Следовательно, кто-то одолжил ему зонтик.
Но кто? Если зонтик Калибану одолжил Лоу, то в силу утверждения 2 Лоу не может быть первым. Из утверждения 1 нам известно, что Лоу не последний, а это делает его вторым. Но если Лоу второй, то утверждение 3 избыточно, поскольку, для того чтобы утверждение 3 давало ценные сведения, вторым должен быть либо Y.Y., либо Критик. Таким образом, Лоу не одалживал Калибану зонтик.
Если и Y.Y., и Критик одолжили Калибану зонтик, то, по утверждению 2, Лоу должен выбирать первым, а, по утверждению 3, Критик должен быть вторым и Y.Y. третьим; другими словами, утверждение 1 избыточно. Следовательно, либо Y.Y., либо Критик одолжили Калибану зонтик, но не оба. Аналогичным образом, если и Y.Y., и Критик видели Калибана в зеленом галстуке, то в силу утверждения 1 Лоу должен выбирать первым, а утверждение 2 избыточно. Стало быть, либо Y.Y., либо Критик видели Калибана в зеленом галстуке, но не оба.
Предположим, Y.Y. видел Калибана в зеленом галстуке и одолжил ему зонтик. Из утверждения 1 мы знаем, что Y.Y. не может выбирать первым, и если это верно, утверждение 2 избыточно. Следовательно, если Y.Y. видел Калибана в зеленом галстуке, то он не мог одолжить ему зонтик, а значит, зонтик одолжил Калибану Критик. Аналогично, если Критик видел Калибана в зеленом галстуке, применима та же логика, и тогда Y.Y. должен был одолжить Калибану зонтик.
В обоих случаях Лоу должен выбирать первым. И если это так, согласно утверждению 3, Y.Y. должен быть тем, кто влюбился первым. В итоге окончательный порядок выбора книг следующий: Лоу, Критик, Y.Y.
12. ТРЕХСТОРОННЯЯ ПЕРЕСТРЕЛКА
Задача о тройной дуэли – настоящая жемчужина среди логических задач. Она приводит нас к блестящему (причем миролюбивому) результату, противоречащему здравому смыслу, а точнее, у Злого оказываются самые высокие шансы на выживание при условии, что он с самого начала не станет никого убивать.
Безусловно, Злой не должен целиться в Плохого, поскольку если он того убьет, то Хороший убьет Злого с вероятностью 100 процентов. Игра окончена.
А что, если Злой возьмет на мушку Хорошего, чтобы сразу же исключить самый точный выстрел? Если Злой убьет Хорошего, то Злой и Плохой продолжат перестрелку друг с другом. При таком развитии событий Злой не будет убит наверняка, но удача все равно не на его стороне. Плохой – более меткий стрелок, и он будет стрелять первым. По существу, шансы Злого на выживание составляют 1/7, или 14 процентов.
Результат получен следующим образом: вероятность того, что Плохой победит с первого выстрела, составляет 2/3, с двух выстрелов – (2/3)(1/3)(2/3), с трех – (2/3)(1/3)(2/3)(1/3)(2/3) и т. д. Вычислив сумму этого бесконечного ряда, вы получите 6/7. Следовательно, шансы Злого на выживание равны 1/7.
Если Злой не попадет в Хорошего, наступит очередь Плохого стрелять, и он будет целиться в Хорошего с вероятностью его убить 2/3. Если ему это удастся, дуэль продолжится между Злым и Плохим, но на этот раз Злой будет стрелять первым. Его шансы на победу немного выше 1/3; на самом деле эта вероятность равна 3/7, или 43 процентам. Если Плохой не попадет в Хорошего, то Хороший убьет Плохого следующим выстрелом, и дуэль продолжится между Злым и Хорошим, причем Злой будет стрелять первым. Теперь его шансы на выживание составляют ровно 1/3.
Другими словами, перспективы Злого гораздо лучше, если он не попадет ни в одного из соперников. И значит, ему стоит промахнуться любой ценой. А для этого разумнее всего стрелять в воздух.
В действительности в обоих случаях промах обеспечивает Злому лучшие шансы на выживание из всех трех героев. Я не стану втягивать вас в вычисление вероятностей, но шансы Злого продержаться до конца составляют 40 процентов, шансы Плохого – 38 процентов, а шансы Хорошего – всего 22 процента.
Мораль истории такова: любой ценой предоставьте сильным возможность сражаться друг с другом.
13. ЯБЛОКИ И АПЕЛЬСИНЫ
У нас есть три ящика с табличками «яблоки», «апельсины», «яблоки и апельсины», и мы можем достать фрукт из одного из них.
Давайте проанализируем возможные варианты развития событий. Предположим, мы достали фрукт из ящика с табличкой «яблоки». Если это яблоко, мы понимаем, что здесь должны быть яблоки и апельсины. В этом ящике не могут храниться одни яблоки, поскольку таблички не соответствуют содержимому, а на табличке написано «яблоки». Остаются два ящика с табличками «апельсины» и «яблоки и апельсины» и два возможных содержимых: только апельсины и только яблоки. В ящике с табличкой «апельсины» не могут быть апельсины, поскольку таблички не соответствуют содержимому, значит, в нем яблоки. Остается ящик «яблоки и апельсины» с апельсинами – и мы правильно определили содержимое всех ящиков.
Ура! Похоже, мы решили задачу. Однако это не так. Поскольку наша стратегия сводится к выбору фрукта из ящика с табличкой «яблоки», есть вероятность, что им окажется апельсин. А если мы достанем апельсин из ящика с табличкой «яблоки», то можем решить, что в нем находятся либо апельсины, либо яблоки и апельсины, а значит, не сможем определить, что именно. Точно так же если мы выберем фрукт из ящика с табличкой «апельсины», то есть вероятность, что достанем яблоко и, следовательно, не сможем узнать, что в ящике – яблоки или яблоки и апельсины.
Решение заключается в том, чтобы выбрать фрукт из ящика с табличкой «яблоки и апельсины». В действительности вы, возможно, уже пришли к этому выводу и без представленных выше рассуждений. Если в головоломке есть единственное решение на основе выбора из трех вариантов, два из которых взаимозаменяемы (как «яблоки» и «апельсины»), то оно должно быть получено в результате выбора варианта, отличного от остальных.
Так что достаем фрукт из ящика с табличкой «яблоки и апельсины». Если это яблоко, нам понятно, что в ящике только яблоки. Остаются ящики с табличками «яблоки» и «апельсины», то есть ящик с апельсинами и ящик с яблоками и апельсинами. В ящике с табличкой «апельсины» не могут быть только апельсины, а значит, он с яблоками и апельсинами. Следовательно, в ящике с табличкой «яблоки» находятся апельсины. Вот так можно правильно развесить таблички на всех ящиках. То же самое мы могли бы сделать и в случае, если бы фруктом, который мы достали из ящика с табличкой «яблоки и апельсины», оказался апельсин, поскольку рассуждали бы аналогичным образом, только заменив яблоки на апельсины.
14. СОЛЬ, ПЕРЕЦ И ПРИПРАВА
Сначала нам необходимо установить, кто этот мужчина. Похоже, что наиболее вероятный кандидат – Сид. Но этот путь приведет нас к противоречию. В задаче сказано, что у этого мужчины нет в руках приправы. Если это Сид, то у него не может быть и соли из-за его фамилии, а значит, у него должен быть перец. Зато у Риза не может быть перца, как, впрочем, и соли, поскольку во время диалога он отвечает тому, у кого она есть. Следовательно, у Риза тоже должен быть перец, а это противоречие.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!