📚 Hub Books: Онлайн-чтение книгДомашняяКапуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос

Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+
1 ... 39 40 41 42 43 44 45 46 47 ... 74
Перейти на страницу:

Так этот мужчина – Фил? Фил – мужское имя! Мы снова столкнулись с противоречием. Судя по диалогу, он не человек с солью. Тогда, если тот мужчина – Фил, у него не может быть соли, так же как и перца, потому что название этой специи совпадает с его фамилией. Таким образом, у него должна быть приправа. Но в задаче говорится, что у мужчины нет приправы.

Методом исключения приходим к выводу, что этим мужчиной должен быть Риз. Поскольку у этого мужчины нет соли, значит, у Риза должен быть перец. А приправа должна быть у Сида, соль – у Фила.

(Если вам интересно, Сид – это уменьшительная форма имени Сидни, которое становится все более популярным женским именем, а Фил – уменьшительная форма имени Филиппа.)

15. КАМЕНЬ, НОЖНИЦЫ, БУМАГА

Определить, как прошла игра, можно следующим образом. Проанализируем те шесть раз, когда Адам выбирает ножницы. Поскольку нам известно, что ничьих не бывает, на каждые шесть ножниц Ева выбирает либо камень, либо бумагу. Ева два раза выбирает камень и четыре – бумагу, из чего мы можем сделать вывод, что всякий раз, когда она называет либо камень, либо бумагу, Адам назвал ножницы. Ножницы Адама проигрывают два раза (камню) и выигрывают четыре раза (бумаге). Общий счет: Адам – 4, Ева – 2.

В оставшихся четырех сетах Ева каждый раз выбирает ножницы, а Адам три раз называет камень и один раз – бумагу. В этом случае счет такой: Адам – 3, Ева – 1.

Итоговый счет: Адам – 7, Ева – 3.

Адам побеждает.

17. ЛИЦО В САЖЕ

Мисс Аткинсон исходит из того, что ее лицо чистое, а два других пассажира смеются друг над другом. Предположим, один находится слева, а другой справа. Допустим, мисс Аткинсон становится на место одного из двух пассажиров, скажем, того, кто сидит слева. Этот пассажир видит пассажира справа, чье лицо испачкано сажей, и мисс Аткинсон, на лице которой сажи нет. Таким образом, пассажир слева смеется, потому что лицо пассажира справа испачкано сажей. Далее мисс Аткинсон размышляет так: тогда почему, по мнению пассажира слева, смеется пассажир справа? Пассажир слева исходит из того, что у него на лице нет сажи, тогда над кем же смеется пассажир справа? Единственная неприятная вероятность: он, должно быть, смеется над мисс Аткинсон! Сделав такой вывод, она немедленно достает носовой платок и вытирает лицо.

18. 40 НЕВЕРНЫХ МУЖЕЙ

Если вы решили две последние головоломки (или хотя бы прочитали их решение), у вас есть почти все инструменты для решения этой. Возможно, вы обратили внимание на то, что эти задачи представляют собой разные вариации одной: в первой участвуют две девочки (имеется в виду задача 16), во второй – три пассажира, а в этой – 40 жен.

В действительности, если в задаче об испачканных лицах увеличить количество детей с двух до 40, заменить слова «у нее грязное лицо» на слова «у нее неверный муж», а слова «делает шаг вперед» на слова «убивает мужа», то она превратится в задачу о неверных мужьях.

В данной задаче есть один поистине ключевой момент: информация о том, что в городе по меньшей мере один муж изменяет своей жене, кажется на первый взгляд совершенно несущественной и даже не имеющей отношения к тому, что произойдет дальше, поскольку каждая женщина знает, что как минимум один муж нарушил супружескую верность. На самом деле все они знают о 39 негодяях. Тем не менее эти данные запускают поразительную последовательность событий.

Задача об испачканных лицах детей завершилась тем, что обе девочки, поняв, что их лица испачканы грязью, сделали шаг вперед. Но кульминацией этой головоломки становится настоящий фильм ужасов: 40 жен убивают своих мужей в одно и то же время.

Как мы получим такое решение? Представьте, что произойдет, если только один муж изменяет своей жене, а остальные 39 супругов хранят верность. Разумеется, жена единственного прелюбодея не знает, есть ли в городе другие неверные мужья, поскольку все женщины с самого начала думают, что их мужья хранят верность. Поэтому она считает, что все остальные мужья тоже верны своим женам. Узнав о неверности по меньшей мере одного мужа, женщина поймет, что это ее муж (потому что все остальные мужья верны своим женам, а значит, неверным может быть только ее муж), и убьет его на следующий день в полдень.

Теперь допустим, что изменников двое. Их жены (назовем их Агнес и Берта) знают только об одном неверном муже, так как обе убеждены в верности своих супругов. Агнес известно, что муж Берты не хранит верность своей жене, а Берта знает, что муж Агнес изменяет ей. Остальным 38 женам известно, что нарушают верность оба мужа – и муж Агнес, и муж Берты. Поскольку все знают о наличии по меньшей мере одного неверного супруга, новость о том, что как минимум один муж изменяет жене, не вызывает беспокойства ни у одного жителя города, и следующий день обходится без кровопролития.

Однако в тот же день после полудня Агнес и Берта приходят в замешательство. Агнес делает вывод (так же как ранее и мы с вами), что если муж Берты – единственный неверный супруг в городе, то Берта должна была убить его в полдень на следующий день после того, как узнала, что в городе есть по меньшей мере один неверный супруг. Тот факт, что Берта не убила своего мужа, наводит Агнес на мысль, что Берте известно о существовании второго неверного мужа. Кто же это может быть? Только ее собственный муж! В итоге на следующий день Агнес убивает своего мужа в полдень, в то же самое время, когда Берта (сделавшая аналогичный вывод) убивает своего супруга. Другими словами, при наличии двух неверных мужей оба будут убиты на второй день после сообщения, что в городе есть по меньшей мере один прелюбодей.

Теперь мы можем проанализировать ситуацию с тремя неверными мужьями. Каждая из жен будет думать, что неверных супругов двое, и после того, как минет второй день, а все мужчины останутся живы, жены все поймут. На третий день три женщины убьют своих супругов. Перейдем к сути. Если в городе 40 неверных мужей, ничего не произойдет до сорокового дня, когда наступит кровавая расплата.

Если бы правитель не упомянул о том, что в городе есть как минимум один неверный муж, приведенная выше логическая аргументация была бы невозможна, и массовое убийство на городской площади можно было бы предотвратить.

19. КОРОБКА СО ШЛЯПАМИ

Первый игрок, Альгернон, может узнать цвет своей шляпы только в том случае, если увидит зеленые шляпы на двух своих друзьях, поскольку это означает, что у него красная шляпа. Если он не знает цвета своей шляпы, то он должен увидеть либо две красные шляпы, либо красную и зеленую.

Аналогично и Бальтазар должен увидеть две красные шляпы или красную и зеленую. Однако мы, похоже, не так уж далеко продвинулись в решении задачи, потому что смогли определить только возможные варианты решения: во-первых, у всех красные шляпы; во-вторых, у Альгернона и Бальтазара зеленые шляпы; в-третьих, лишь у Каратака зеленая шляпа.

Так как Каратак видит только красные шляпы, мы можем исключить вариант 2. А теперь представьте, что вариант 3 верен и у Каратака зеленая шляпа. Предположим, это действительно так, и проанализируем вопрос снова. Альгернон увидел бы зеленую и красную шляпу, после чего пришел бы к выводу, что не знает, какого цвета его шляпа. Бальтазар видит, что у Каратака зеленая шляпа. Исходя из того что Альгернон не знает цвета своей шляпы, Бальтазар может исключить, что у него самого зеленая шляпа, поскольку если бы это было так, то Альгернон сказал бы, что знает цвет своей шляпы! Таким образом, Бальтазар узнает, что у него красная шляпа, а в этом случае он не может сказать, что не знает цвета своей шляпы. Предположение о том, что вариант 3 верен, приводит нас к противоречию, следовательно, на самом деле верен вариант 1: у Каратака красная шляпа.

1 ... 39 40 41 42 43 44 45 46 47 ... 74
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?