📚 Hub Books: Онлайн-чтение книгДомашняяАналитическая культура. От сбора данных до бизнес-результатов - Карл Андерсон

Аналитическая культура. От сбора данных до бизнес-результатов - Карл Андерсон

Шрифт:

-
+

Интервал:

-
+
1 ... 41 42 43 44 45 46 47 48 49 ... 88
Перейти на страницу:

На рис. 7.9 показан среднегодовой размер оплаты труда госслужащих в Великобритании по тарифным разрядам и с делением по гендерному признаку.

Аналитическая культура. От сбора данных до бизнес-результатов

Рис. 7.9. Среднегодовая заработная плата (в тыс. фунтов стерлингов) госслужащих в Великобритании по тарифным разрядам (более низкая цифра разряда означает более высокую должность) и с делением по гендерному признаку

Источник: http://news.bbc.co.uk/2/hi/business/8044720.stm

С диаграммой все в порядке. У нее понятное название и обозначения осей. По оси х представлены тарифные разряды по возрастающей слева направо, как и следовало ожидать, учитывая, что в западной традиции принято направление чтения слева направо (хотя несколько вводит в заблуждение, что номера тарифных разрядов, наоборот, уменьшаются в порядке значимости). Ось y тоже нареканий не вызывает. Нет усечения по вертикальной оси. Интервал в 25 тыс. фунтов стерлингов кажется оправданным. При составлении диаграммы был богатый выбор цветовой палитры.

В итоге выбрали основной голубой цвет (который обычно ассоциируется с мужским полом) и дополнительный оранжевый для обозначения женского пола. Выбор вполне обоснован. В этой диаграмме нет грубых ошибок.

А теперь посмотрите, что получится, если во всех тарифных разрядах поменять местами столбцы, обозначающие пол (рис. 7.10).

Аналитическая культура. От сбора данных до бизнес-результатов

Рис. 7.10. Та же самая диаграмма, что и на рис. 7.9, за исключением того, что во всех тарифных разрядах поменяли местами столбцы, обозначающие пол. Вам не кажется, что неравенство в заработной плате по гендерному признаку бросается в глаза сильнее?

Удивительная разница. Те же самые данные, те же самые оси, те же самые интервалы и цветовая схема. Всего одно небольшое изменение кардинальным образом меняет восприятие неравенства в оплате труда у мужчин и женщин[116]. Основное сообщение, о неравенстве оплаты труда, становится гораздо более наглядным. Первая диаграмма построена правильно, просто вторая — более наглядная.

Думаю, из этого примера очевидно, что каждая диаграмма, которую вы строите, требует индивидуального подхода. К тому же необходимо развивать в себе критическое восприятие. Этот навык приходит с практикой, в процессе работы со случаями, подобными этому. Поэтому всем специалистам по работе с данными я настоятельно рекомендую ознакомиться с книгами, которые я упоминал в начале этой главы, изучить метод trifecta checkup Кайзера Фанга — метод проверки диаграмм на наличие «графического мусора»[117], а также посещать семинары по визуализации данных и, самое главное, практиковаться. Изучайте диаграммы из Wall Street Journal, New York Times и The Economist — все они задают очень высокую планку качества. Что делает их такими эффективными и где у них бывают проколы? (Да, такое тоже случается.) Сравните диаграммы в /r/dataisbeautiful/[118] и r/dataisugly[119]. Почему первые такие ясные, а вторые такие бестолковые? Спросите себя, что бы вы сделали иначе.

Подача данных

В этом разделе мы поговорим о способах подачи сделанных выводов. Во-первых, кратко остановимся на инфографике, которая в последнее время пользуется особенной популярностью у специалистов по маркетингу. Во-вторых, изучим гораздо более важную тему дашбордов. Как уже говорилось в начале книги, многие компании считают, что у них развито управление на основе данных, просто потому что их сотрудники пользуются множеством дашбордов. Дашборды и отчеты о состоянии работ, несомненно, стали полезным и одним из наиболее распространенных инструментов. Мы рассмотрим несколько типов дашбордов и обсудим их пользу (или отсутствие таковой) для процесса принятия решений.

ИНФОГРАФИКА

В контексте управления на основе данных я не большой поклонник инфографики: сегодня инфографика превратилась в «веселые картинки», приправленные парой фактов, которые обычно создают дизайнеры, а не аналитики. По моему мнению, у подобной инфографики слишком низкое соотношение данных и чернил (data-to-ink ratio), как его определил Эдвард Тафти. Фактически в большинстве случаев инфографика страдает от «графического мусора» и от недостатка данных. Например, на рис. 7.11 в забавной и визуально привлекательной форме представлен размер мозга у животных с разной массой тела.

Аналитическая культура. От сбора данных до бизнес-результатов

Рис. 7.11. Инфографика Big Thinkers из книги Роджерса и Блечмана (2014) Information Graphics: Animal Kingdom. Big Picture Press

При этом более лаконичной и эффективной формой для представления этих данных могла бы стать столбиковая диаграмма или таблица:

Аналитическая культура. От сбора данных до бизнес-результатов

На самом деле интересно здесь другое — отношение массы мозга к общей массе тела. Диаграмма, отражающая это соотношение, содержит одно из удивительнейших открытий сравнительной биологии — закон масштаба. На рис. 7.12 показано, что масса мозга относительно общей массы тела уменьшается с увеличением массы тела[120].

1 ... 41 42 43 44 45 46 47 48 49 ... 88
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?