📚 Hub Books: Онлайн-чтение книгДомашняяПростая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Шрифт:

-
+

Интервал:

-
+
1 2 3 4 5 6 7 8 9 10 ... 121
Перейти на страницу:

Сказать-то я это сказал, но смогу ли я это доказать? Всем известно, что в математике каждый результат надо строго логически доказывать. Результат у нас такой: гармонический ряд расходится. Как его доказать?

Доказательство оказывается довольно простым и опирается только на самую элементарную арифметику. В Средние века его нашел французский ученый Никола Орем (ок. 1323-1382).[1] Орем заметил, что сумма 1/3 + 1/4 больше чем 1/2; равным образом и 1/5 + 1/6 + 1/7 + 1/8 также больше чем 1/2; то же верно и для суммы 1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16. Другими словами, будем брать сначала 2, потом 4, потом 8, потом 16 и т.д. членов гармонического ряда и группировать их вместе; получится бесконечное число таких групп, каждая из которых в сумме превосходит одну вторую. Полная сумма, следовательно, должна быть бесконечной. Не стоит переживать из-за того, что размеры этих групп растут очень быстро: «в бесконечности» полно места, и неважно, сколько групп мы уже образовали, следующая все равно окажется на своем месте и к нашим услугам. Всегда есть возможность добавить еще одну а это и означает, что сумма растет неограниченно.

Данное Оремом доказательство расходимости гармонического ряда, по-видимому, пролежало невостребованным в течение нескольких столетий. Пьетро Менголи передоказал этот же результат в 1647 году с помощью другого метода. Сорок лет спустя Иоганн Бернулли дал доказательство еще одним, третьим, способом, а вскоре после того старший брат Иоганна Якоб предложил четвертый способ. Судя по всему, ни Менголи, ни братья Бернулли не знали о найденном в XIV веке доказательстве Никола Орема — одном из хорошо забытых шедевров средневековой математики. Тем не менее доказательство Орема остается наиболее прямым и изящным среди всех доказательств, и его, как правило, и приводят в современных учебниках.

IV.

В рядах изумляет не то, что некоторые из них расходятся, а то, что так делают не все ряды. Когда мы складываем бесконечное число слагаемых, разве мы не вправе ожидать, что и ответ будет бесконечен? То, что это не всегда так, легко проиллюстрировать.

Возьмем линейку, на которой делениями отмечены четверти, восьмые, шестнадцатые и т.д. (чем дальше, тем лучше — я изобразил линейку, на которой отмечены доли в одну шестьдесят четвертую). Поставим остро заточенный карандаш у самого первого деления на линейке — нуля. Подвинем карандаш на один дюйм вправо. Теперь карандаш указывает на деление, обозначающее один дюйм, а переместили карандаш мы также на один дюйм (рис. 1.7).

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.7.

Вслед за тем сдвинем карандаш вправо еще на полдюйма (рис. 1.8).

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.8.

Далее сдвинем еще на четверть дюйма вправо, потом на восьмую часть дюйма, потом на шестнадцатую, на тридцать вторую и на шестьдесят четвертую. Где теперь находится карандаш, видно на рисунке 1.9.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.9.

А полное расстояние, на которое переместился карандаш, равно

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64

что, как нетрудно посчитать, составляет 163/64. Понятно, что если продолжать в том же духе, то мы всякий раз будем оказываться все ближе и ближе к двухдюймовой отметке. Точно на нее мы никогда не попадем, но нет предела тому, насколько близко к ней можно подобраться. Можно приблизиться менее чем на миллионную долю дюйма, можно на триллионную; или на триллион триллион триллион триллион триллион триллион триллион триллион триллионную. Этот факт выражается таким образом:

1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + … = 2. (1.1)

Здесь имеется в виду, что слева от знака равенства выполняется суммирование бесконечного числа членов.

Важно осознать разницу между гармоническим рядом и этим новым рядом. В случае гармонического ряда сложение бесконечного числа слагаемых дало бесконечный результат. Здесь же сложение бесконечного числа слагаемых дает ответ 2. Гармонический ряд расходится. Наш новый ряд сходится.

В гармоническом ряде есть свое очарование, и он имеет прямое отношение к главной теме данной книги — Гипотезе Римана. Но вообще-то математиков больше интересуют сходящиеся ряды, нежели расходящиеся.

V.

Предположим теперь, что вместо того, чтобы передвигаться направо на один дюйм, потом на полдюйма, потом на четверть дюйма и т.д., мы будем менять направление: дюйм вправо, полдюйма влево, четверть дюйма вправо, одна восьмая дюйма влево… После семи шагов мы попадем в точку, показанную на рисунке 1.10.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике

Рисунок 1.10.

С математической точки зрения сдвиг налево означает сдвиг направо на отрицательную величину, и поэтому наши передвижения выражаются такой суммой:

1 − 1/2 + 1/4 − 1/8 + 1/16 − 1/32 + 1/64,

что на самом деле равно 43/64. В действительности несложно доказать — и мы это сделаем в одной из последующих глав, — что если продолжать прибавлять и вычитать до бесконечности, то результат будет таким:

1 2 3 4 5 6 7 8 9 10 ... 121
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?