📚 Hub Books: Онлайн-чтение книгПсихологияИскусство мыслить правильно - Александр Ивин

Искусство мыслить правильно - Александр Ивин

Шрифт:

-
+

Интервал:

-
+
1 ... 58 59 60 61 62 63 64 65 66 ... 102
Перейти на страницу:

Ответы на эти вопросы были получены в 30-е годы, когда был установлен ряд теорем, принципиально ограничивающих формализацию. Наиболее важная из них принадлежит австрийскому математику и логику К. Гёделю. В 1931 г. он показал, что любая достаточно богатая по содержанию и являющаяся непротиворечивой теория неизбежно неполна: она не охватывает все истинные утверждения, относящиеся к ее области. Теорема Гёделя непосредственно относилась к арифметике и утверждала, что существует имеющее смысл утверждение арифметики целых чисел (обозначим это утверждение буквой С), которое в рамках данной теории нельзя ни доказать, ни опровергнуть. Но либо утверждение С, либо утверждение не-С истинно. Следовательно, в арифметике существует истинное утверждение, которое недоказуемо, а значит, и неразрешимо.

Эта теорема произвела эффект разорвавшейся бомбы не только в математике и логике. Она распространяется на любую формализованную теорию, содержащую арифметику, и говорит о внутренней ограниченности процедуры формализации, о невозможности представления достаточно богатой теории в виде завершенной формализованной системы.

Гёделевская теорема не дискредитирует, конечно, метод формализации. Но она говорит, что никакая формализация не способна исчерпать все богатство приемов и методов содержательного мышления. Сравнивая возможности человека и современных вычислительных машин, можно сказать, что для каждой конкретной задачи в принципе можно построить машину, которой эта задача была бы под силу. Нельзя, однако, создать машину, пригодную для решения любой задачи. Из гёделевской теоремы о неполноте следует непреложный вывод: природа и резервы человеческого разума неизмеримо тоньше и богаче любой из существующих или воображаемых вычислительных машин.

Теорема Гёделя иногда истолковывается как свидетельство какой-то внутренней, непреодолимой ограниченности человеческого мышления. Такая пессимистическая интерпретация безосновательна. Теорема устанавливает границы только «машиноподобного», «вычисляющего» разума. Вместе с тем она косвенно говорит о могуществе творческого разума, способного создавать новые понятия и методы для решения принципиально новых проблем.

Глава 9. Правдоподобные рассуждения

Уподобления не доказывают, а лишь объясняют доказанное.

М. В. Ломоносов

Даже в его молчании были слышны орфографические ошибки.

С. Е. Лец

Каждый человек склонен по-своему с чем-то сравнивать человеческую жизнь. Один столяр, например, как-то сказал: «Человек, что столяр: столяр живет, живет и умирает, так же и человек».

Шолом-Алейхем

В аду сама смерть не умирает.

Августин

Что не убивает меня, то делает сильнее.

Ф. Ницше
1. Дедукция и индукция

«По одной капле воды… человек, умеющий мыслить логически, может сделать вывод о существовании Атлантического океана или Ниагарского водопада, даже если он не видал ни того, ни другого и никогда о них не слыхал… По ногтям человека, по его рукам, обуви, сгибу брюк на коленях, по утолщениям кожи на большом и указательном пальцах, по выражению лица и обшлагам рубашки — по таким мелочам нетрудно угадать его профессию. И можно не сомневаться, что все это вместе взятое подскажет сведущему наблюдателю верные выводы».

Это цитата из программной статьи самого знаменитого в мировой литературе сыщика-консультанта Шерлока Холмса. Исходя из мельчайших деталей, он строил логически безупречные цепи рассуждений и раскрывал запутанные преступления, причем зачастую не выходя из своей квартиры на Бейкер-стрит. Холмс использовал дедуктивный метод, ставящий, как полагал его друг, доктор Уотсон, раскрытие преступлений на грань точной науки.

Конечно, Холмс несколько преувеличивал значение дедукции в криминалистике, но его рассуждения о дедуктивном методе сделали свое дело. «Дедукция» из специального и известного только немногим термина превратилась в общеупотребительное и даже модное понятие. Популяризация искусства правильного рассуждения и, прежде всего, дедуктивного рассуждения — не меньшая заслуга Холмса, чем все раскрытые им преступления. Ему удалось «придать логике прелесть грезы, пробирающейся сквозь хрустальный лабиринт возможных дедукций к единственному сияющему выводу» (В. Набоков).

Определения дедукции и индукции

В широком смысле умозаключение — логическая операция, в результате которой из одного или нескольких принятых утверждений (посылок) получается новое утверждение — заключение (вывод, следствие).

В зависимости от того, существует ли между посылками и заключением связь логического следования, можно выделить два вида умозаключений.

В дедуктивном умозаключении эта связь опирается на логический закон, в силу чего заключение с логической необходимостью вытекает из принятых посылок. Отличительная особенность такого умозаключения в том, что оно от истинных посылок всегда ведет к истинному заключению.

В индуктивном умозаключении связь посылок и заключения опирается не на закон логики, а на некоторые фактические или психологические основания, не имеющие чисто формального характера. В таком умозаключении заключение не следует логически из посылок и может содержать информацию, отсутствующую в них. Достоверность посылок не означает, поэтому достоверности выведенного из них индуктивно утверждения. Индукция дает только вероятные, или правдоподобные, заключения, нуждающиеся в дальнейшей проверке.

К дедуктивным относятся, к примеру, умозаключение:

Если идет дождь, земля является мокрой.

Идет дождь.

Следовательно, земля мокрая.

Еще одно дедуктивное умозаключение:

Если гелий металл, он электропроводен.

Гелий не электропроводен.

Значит, гелий не металл.

Примером индукции могут служить рассуждение:

Аргентина является республикой; Бразилия — республика;

Венесуэла — республика; Эквадор — республика.

Аргентина, Бразилия, Венесуэла, Эквадор — латиноамериканские государства.

Значит, все латиноамериканские государства являются республиками.

Еще одно индуктивное умозаключение:

Италия — республика; Португалия — республика; Финляндия — республика; Франция — республика.

Италия, Португалия, Финляндия, Франция — западноевропейские страны.

Значит, все западноевропейские страны являются республиками.

Индукция не дает полной гарантии получения новой истины из уже имеющихся. Максимум, о котором можно говорить, — это определенная степень вероятности выводимого утверждения. Так, посылки и первого и второго индуктивного умозаключения истинны, но заключение первого из них истинно, а второго — ложно. Действительно, все латиноамериканские государства — республики; но среди западноевропейских стран имеются не только республики, но и монархии, например Англия, Бельгия и Испания.

1 ... 58 59 60 61 62 63 64 65 66 ... 102
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?