📚 Hub Books: Онлайн-чтение книгРазная литератураУдивительные числа Вселенной - Антонио Падилья

Удивительные числа Вселенной - Антонио Падилья

Шрифт:

-
+

Интервал:

-
+
1 ... 59 60 61 62 63 64 65 66 67 ... 103
Перейти на страницу:
то время считалось, что бета-распад происходит, когда тяжелое атомное ядро выбрасывает электрон. Как и все в квантовом мире, энергия ядер до и после распада должна принимать весьма точные значения. Поскольку все верили, что энергия сохраняется, то же должно было происходить и с электронами, из которых состоит излучение. Однако дела обстояли иначе. Чедвик заметил, что электроны обладают произвольным количеством энергии, — ее распределение было непрерывным. Казалось, бета-распад противоречит идее, что энергия не создается и не уничтожается. Полученный результат привел физику в смятение. Даже великий Нильс Бор был готов отказаться от закона сохранения энергии, отбросив вывод, сделанный задолго до того Юлиусом Майером, который изучал кровь моряков своего судна. Когда разразилась война, застрявший в Германии Чедвик был в лагере для гражданских интернированных лиц. Нужно отдать должное немецким охранникам: ему позволили устроить лабораторию и снабдили его необходимой для экспериментов радиоактивной зубной пастой[117].

Решение головоломки Чедвика дал другой немец. Оно пришло в виде необычного письма, отправленного Паули участникам конференции, которая состоялась в Тюбингене в декабре 1930 года. Паули не смог присутствовать лично, поскольку предпочел посетить бал в Цюрихе. Однако его виртуальный вклад обеспечил этой конференции место в истории физики. Паули никогда не довольствовался скучными вступлениями и на этот раз начал свое письмо так: «Уважаемые радиоактивные дамы и господа». Далее он высказал замечательную догадку: проблему бета-распада можно решить с помощью крохотных нейтронов. Суть в том, что они выбрасываются в виде излучения вместе с электронами и уносят с собой недостающую энергию в эксперименте Чедвика. Нейтроны Паули — вовсе не те частицы, которые, как известно, находятся вместе с протонами в ядре атома. Нейтроны ядра Чедвик откроет через год-два, и они окажутся намного тяжелее, чем частица, предложенная Паули. Последнюю мы теперь называем нейтрино — нечто маленькое, легкое и электрически нейтральное[118].

Когда в 1933 году Паули выступил с докладом о своих маленьких частицах на конференции в Брюсселе, это произвело глубокое впечатление на отца фермионов Энрико Ферми. Ферми вернулся в Рим, полный решимости собрать воедино все детали идеи Паули. Он понял, что, когда ядро атома при бета-распаде выбрасывало электрон, последний вовсе не находился в ядре в готовом виде. Происходило нечто совершенно новое. Нейтрон внутри ядра распадался под действием новой неизвестной силы, сейчас мы ее называем слабым взаимодействием. Продуктом этого распада оказывались протон, электрон и одно из нейтрино Паули. Строго говоря, это антинейтрино, но не будем особо беспокоиться об этом. Не стоит думать, что нейтрон состоит из протона, электрона и нейтрино, а затем распадается. Он буквально превращается в них, как субатомный оборотень. Как только такое преобразование завершено, появившийся протон увеличивает атомный номер ядра, перемещая его на одну позицию вверх в периодической таблице, а электрон и нейтрино выбрасываются в виде излучения. Новая сила Ферми, ответственная за всю эту радиоактивную драму, действует на бесконечно малом расстоянии, будто переносчик — бесконечно тяжелая частица. Такие силы мы сейчас называем контактными: в одной точке в один момент времени взаимодействуют нейтрон, протон, электрон и нейтрино. Когда Ферми отправил свою работу в журнал Nature, ее отвергли как слишком далекую от физической реальности. Позже журнал признал, что отказ стал одной из величайших редакционных ошибок в его истории. Ферми тяжело воспринял отвод и решил, что ему надо на некоторое время отойти от теоретической физики. Он сосредоточился на экспериментах и в 1938 году получил Нобелевскую премию. Ферми разработал метод замедления нейтронов, и в результате они стали более точными снарядами для расщепления атомных ядер. Он осознал огромный потенциал извлечения энергии из атома и проложил путь к ядерной энергетике в промышленных масштабах.

Нейтрино трудно обнаружить. Проблема в том, что у них почти нет массы и нет заряда, поэтому они практически ни с чем не взаимодействуют. Это и к лучшему, поскольку в данный момент через ваше тело каждую секунду проходит примерно 100 трлн нейтрино. Благодаря этой способности оставаться инкогнито нейтрино экспериментально открыли только в 1956 году — спустя двадцать с лишним лет после первоначальной гипотезы Паули и Ферми. Когда Паули получил телеграмму с извещением об открытии, он ответил: «Спасибо за сообщение. Все приходит к тому, кто умеет ждать».

Через шесть месяцев после открытия нейтрино мир физики был потрясен еще более замечательным экспериментом. Руководила им Ву Цзяньсюн, которую обычно называли мадам Ву. Она выросла в китайском городке Люхэ, недалеко от устья Янцзы, в семье учителя и инженера, которые активно поощряли ее стремление к науке. В этой прогрессивной среде она получила хорошее образование. Позже она сказала в интервью журналу Newsweek: «В китайском обществе женщин оценивают исключительно по их достоинствам. Мужчины поощряют их преуспевание, и им не приходится ради успеха изменять свои женские качества». Но когда она в 1936 году приехала в США, чтобы поступить в докторантуру в Мичиганском университете, она столкнулась совсем с иной ситуацией. Студенткам не разрешалось входить в новый студенческий центр через парадный вход — им приходилось пробираться через боковой. Ву была так потрясена сексизмом, что отправилась на Западное побережье, в Калифорнийский университет в Беркли, где отношение к женщинам было более либеральным. Но даже там у нее возникали сложности, поскольку, по мнению других людей, ученые должны выглядеть не так. Ву была хорошенькой и миниатюрной, газета Oakland Tribune сообщала, что она больше похожа на актрису, чем на ученого. Но, несмотря на все предубеждения, она заработала себе серьезную репутацию физика-ядерщика. Вскоре ее стали сравнивать с Марией Кюри, польским химиком, которая открыла первые секреты радиоактивности; с той самой женщиной, которой Ву восхищалась больше, чем кем-либо другим.

К середине 1950-х Ву проводила эксперименты с бета-распадом в своей низкотемпературной лаборатории в Вашингтоне. Двое ее китайских коллег, теоретики Фрэнк Янг и Ли Чжэндао, предложили ей поискать нечто совершенно неожиданное: спросить Вселенную, есть ли в ней разница между левым и правым. Представьте, что Вселенная отразилась в зеркале, где мы меняем местами лево и право[119]. Окажется ли там физика иной? В то время большинство ученых полагало, что нет. Электрон по-прежнему будет притягиваться к протону и отталкиваться от других электронов. Земля по-прежнему будет вращаться по эллиптической орбите вокруг Солнца. Смерть и налоги по-прежнему будут существовать[120]. Но когда Ву провела эксперимент, предложенный Янгом и Ли, она заметила, что при бета-распаде всегда вылетают левые электроны. Если смотреть в направлении движения, то левый электрон — тот, который кажется вращающимся против часовой стрелки, а правый — вращающимся по часовой стрелке[121]. Результат Ву доказал, что наша Вселенная может установить разницу между левым и правым, между движением по часовой стрелке и

1 ... 59 60 61 62 63 64 65 66 67 ... 103
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?