Эпигенетика. Как современная биология переписывает наши представления о генетике, заболеваниях и наследственности - Несса Кэри
Шрифт:
Интервал:
Совершенно ясно, что такие явления имеют место, причем происходят они довольно часто, но не менее часто оказывается крайне сложно точно определить, как именно мутировал супрессор новообразований. В последние пятнадцать лет мы начали понимать, что существует и другой способ, которым могут репрессироваться гены-супрессоры новообразований. Ген может подавляться эпигенетически. Если ДНК у промотора становится сильно метилированной или на гистоны накладываются репрессивные модификации, то супрессоры новообразований отключаются. Ген, таким образом, инактивируется без внесения изменений в базовую схему.
Эпигенетический рубеж рака
В разных лабораториях были определены виды рака, при которых имеет место именно этот процесс. Одной из первых в их числе называлась одна из разновидностей рака почки — гипернефроидная опухоль почки. Ключевым моментом при развитии этот вида рака является подавление особого гена-супрессора новообразований VHL. В 1994 году группа исследователей, возглавляемая известным ученым Стивеном Бэйлином, из Медицинского института Джонса Хопкинса в Балтиморе проанализировала островок CpG, расположенный перед геном VHL. В 19 процентах исследованных ими случаев гипернефроидной опухоли почки ДНК этого островка была гиперметилированной. В результате экспрессия этого ключевого гена-супрессора новообразований оказалась подавлена, что практически наверняка и стало главной причиной развития рака у исследованных учеными пациентов[180].
Метилирование промотора отнюдь не ограничивается лишь супрессором новообразований VHL и гипернефроидной опухолью почки. На следующем этапе работы профессор Бэйлин с коллегами проанализировали ген-супрессор новообразований BRCA1 при раке груди. Они исследовали случаи, при которых в роду у пациентов не было предков, страдавших этим заболеванием, а само оно не было вызвано мутацией BRCA1, которую мы обсуждали несколькими абзацами выше. В 13 процентах этих спорадических случаях рака груди островок CpG на BRCA1 оказался гиперметилированным[181]. Более широкий спектр аномалий в метилировании ДНК при раке был продемонстрирован Жаном-Пьером Исса из Андерсоновского ракового центра в Хьюстоне, работавшим в сотрудничестве со Стивеном Бэйлином. В результате совместно проведенных исследований они обнаружили, что более чем в 20 процентах случаев рака толстой кишки имеют место высокие уровни метилирования промотора ДНК одновременно на многих разных генах[182].
Последующие работы показали, что метилирование ДНК не является единственным фактором, претерпевающим изменения при раке. Существуют прямые свидетельства того, что гистоновые модификации также ведут к подавлению генов-супрессоров новообразований. Например, гистоны, связанные с геном-супрессором новообразований под названием ARHI, при раке груди отличаются низкими уровнями ацетилирования[183]. Подобное явление происходит и с супрессором новообразований PER1 при развитии одной из разновидностей рака легкого, которая называется немелкоклеточной карциномой легкого[184]. В обоих случаях наблюдается взаимосвязь между уровнями гистонового ацетилирования и экспрессией супрессора новообразований — чем ниже уровни ацетилирования, тем слабее экспрессия гена. Поскольку эти гены оба являются супрессорами новообразований, их пониженная экспрессия ведет к тому, что клетке становится труднее сдерживать пролиферацию.
Понимание того, что гены-супрессоры новообразований часто подавляются эпигенетическими модификациями, оказалось сродни свету в конце тоннеля, поскольку оно указывало путь для поиска нового способа лечения рака. Если бы удалось снова активировать один или несколько генов-супрессоров в раковых клетках, то появлялись бы реальные шансы обуздать безумную пролиферацию этих пораженных клеток. Возможно, уходящий поезд можно было бы не только остановить, но и повернуть обратно.
Когда ученые думали, что супрессоры новообразований подавляются вследствие мутаций или делеций, они не располагали широким выбором возможностей для повторного включения этих генов. В настоящее время проводятся исследования, которые должны дать ответ на вопрос, можно ли решить эту задачу с помощью генной терапии. При определенных условиях генная терапия может оказаться чрезвычайно эффективной, но говорить, что она станет решением проблемы, было бы пока слишком преждевременно. Генная терапия уже неоднократно и небезуспешно применялась при самых разных заболеваниях. Однако обычно крайне сложно доставить гены в нужные клетки, а затем заставить их активироваться, когда они окажутся на месте. Даже когда нам удается сделать это, часто организм отторгает кажущиеся ему лишними гены, и вся предварительная кропотливая работа оказывается сделанной впустую. Имели место и такие относительно редкие случаи, когда генная терапия сама инициировала развитие рака, так как имела непредсказуемые последствия, вызывавшие повышенную пролиферацию клеток. Но научное сообщество не оставляет надежд на генную терапию, и в определенных случаях именно она предлагает выход из тупиковых ситуаций[185]. Однако при таких заболеваниях как рак, когда в лечении нуждаются многие и многие люди, она оказывается слишком дорогой и сложной.
Вот почему вокруг разработки эпигенетических препаратов для лечения рака наблюдается такой ажиотаж. По определению, эпигенетические изменения не затрагивают базовый код ДНК. Как мы уже убедились, у некоторых пациентов одна копия супрессора новообразований бывает подавлена воздействием на нее эпигенетических ферментов. У этих больных код нормального белка супрессора новообразований не поражен мутацией. Значит, есть надежда, что лечение этих пациентов соответствующими эпигенетическими препаратами может изменить аномальную схему метилирования ДНК или гистонового ацетилирования. Если мы сможем добиться этого, то нормальный ген-супрессор новообразований будет снова активирован, что поможет организму вернуть себе контроль над раковыми клетками.
Управление по контролю за продуктами и лекарствами (УПЛ) уже выдало лицензии на клиническое применение для лечения рака в США двум препаратам, подавляющим фермент ДНМТ1. Это 5-азацитидин (торговая марка «Видаза») и родственный ему 2-аза-5’-деоксицитидин (торговая марка «Дакоген»). Лицензии получили и два препарата, подавляющие ГДАЦ. Ими стали САГК (торговая марка «Золинза»), с которым мы уже встречались выше, и молекула под названием ромидепсин (торговая марка «Истодакс»), которая по химическому строению сильно отличается от САГК, но также подавляет ферменты ГДАЦ.
Поделиться книгой в соц сетях:
Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!