📚 Hub Books: Онлайн-чтение книгРазная литератураМир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка

Мир-фильтр. Как алгоритмы уплощают культуру - Кайл Чейка

Шрифт:

-
+

Интервал:

-
+
1 ... 3 4 5 6 7 8 9 10 11 ... 96
Перейти на страницу:
однажды описал мне систему этой компании как целый “оркестр” алгоритмов с “дирижирующим” алгоритмом. Каждый алгоритм применяет собственные стратегии для выработки рекомендаций, а затем алгоритм-дирижер определяет, какие варианты выдать в тот или иной момент. (При этом единственный результат работы сервиса – следующая песня в плейлисте.) В разные моменты требуются разные алгоритмические методы рекомендаций.

Единого монолитного “алгоритма” не существует, поскольку каждая платформа работает по-своему, используя индивидуальные переменные и наборы уравнений. Важно помнить, что работа ленты Фейсбука – это коммерческое решение, аналогичное тому, как производитель продуктов питания решает, какие ингредиенты использовать. Алгоритмы также меняются со временем, совершенствуясь с помощью машинного обучения. Данные, которые они получают, используются для постепенного самосовершенствования, чем стимулируется еще большее вовлечение; машина адаптируется к пользователям, а пользователи – к машине. Различия между платформами стали более заметными и актуальными в середине 2010-х годов, когда социальные сети и стриминговые сервисы усилили алгоритмическую подачу информации и та стала основой пользовательского опыта.

Мы, пользователи, в принципе не понимаем, как обычно работают алгоритмические рекомендации. Их уравнения, переменные и весовые коэффициенты не являются общедоступной информацией, потому что технологические компании не заинтересованы в их обнародовании. Они являются коммерческой тайной и важны для бизнеса почти так же, как коды запуска ядерных ракет – для государства. Их редко раскрывают; редко встречаются даже намеки на них. Одна из причин заключается в том, что в условиях общедоступности алгоритма пользователи получат возможность обманывать систему, чтобы продвигать свой собственный контент. Еще одна причина – страх перед конкуренцией: другие цифровые платформы могут украсть “секретный ингредиент” и состряпать более качественный продукт. И все же эти инструменты, как и многие другие цифровые технологии, зародились в некоммерческой среде.

Алгоритмы рекомендаций как способ автоматической обработки и сортировки информации начали применяться в 1990-х годах. Одним из первых примеров стала система сортировки электронной почты – муторное занятие и по сей день. Уже в 1992 году инженеры научно-исследовательского центра компании Xerox в Пало-Альто (более известного как PARC) начали утопать в почте. Они пытались решить проблему “растущего использования электронной почты, в результате которого пользователей захлестывает колоссальный поток входящих документов”, как написали Дэвид Голдберг, Дэвид Николс, Брайан Оки и Дуглас Терри в статье 1992 года. (Они даже не подозревали, с каким объемом цифровой коммуникации мы столкнемся в XXI веке.) Их система фильтрации электронной почты под названием Tapestry использовала два вида алгоритмов, работавших совместно: “фильтрация на основе содержания” и “совместная фильтрация”. Первый, который уже применялся в нескольких системах электронной почты, оценивал текст писем – например, если вы хотели установить приоритет по слову “алгоритм”. Второй, более инновационный метод, основывался на действиях других пользователей. При определении приоритета конкретного письма учитывалось, кто его открыл и как на него отреагировал. В статье говорилось:

Люди помогают друг другу осуществлять фильтрацию, записывая свои реакции на прочитанные документы. Например, такая реакция может уведомлять, что документ показался особенно интересным (или особенно неинтересным). Подобные реакции, называемые в общем случае аннотациями, могут быть доступными фильтрам других людей.

В Tapestry использовались “фильтратор”, запускавший повторяющиеся запросы по набору документов, “ящичек”, собиравший материалы, которые могли заинтересовать пользователя, и “оценщик”, который устанавливал приоритеты и категоризировал документы. Концептуально это очень похоже на современные алгоритмические ленты: цель Tapestry заключалась в том, чтобы выводить на первый план контент, который с наибольшей вероятностью окажется важен для пользователя. Однако подобная система требовала гораздо больше предварительных действий со стороны пользователей: им приходилось писать запросы, по которым система определяла, что они желают увидеть, основываясь либо на контенте, либо на действиях других пользователей. Остальным пользователям в системе также приходилось выполнять весьма целенаправленные действия, помечая материал как важный или нерелевантный. Для подобной схемы требуется небольшая группа людей, которые уже знают друг друга и понимают, как их сообщество взаимодействует с электронной почтой – например, вы уже осведомлены, что Джефф отвечает только на особо важные письма, и поэтому вы хотите, чтобы ваш фильтр выводил наверх все письма, на которые отвечает Джефф. Tapestry лучше всего функционировала в весьма небольшой системе.

В 1995 году Упендра Шардананд и Пэтти Маес из MIT Media Lab (медиалаборатории Массачусетского технологического института) описали в своей статье “социальную фильтрацию информации” – “технику создания персонализированных рекомендаций из любой базы данных для пользователя на основе сходства профилей интересов”. Эта работа опиралась на идеи Tapestry и стала ответом на перегруженность онлайн-информацией: “Объем значительно больше, нежели человек может отфильтровать, чтобы найти то, что ему понравится”. Авторы пришли к выводу о необходимости автоматизированных фильтров: “Нам нужна технология, которая поможет продраться через всю информацию, чтобы найти то, что нам действительно нужно, и избавит нас от того, с чем мы не хотим заморачиваться”. (Естественно, эта проблема актуальна до сих пор.) Шардананд и Маес утверждали, что у фильтрации на основе содержания есть существенные недостатки. Она требует перевода материала в данные, понятные машине, например в текст; ей не хватает интуитивной прозорливости, поскольку она может фильтровать только по терминам, которые вводит пользователь; и она не измеряет внутреннее качество. Она не способна “отличить хорошо написанную статью от плохо написанной, если в этих двух работах используются одинаковые термины”. Невозможность оценить качество наводит на мысли об искусственном интеллекте: новые инструменты вроде ChatGPT, казалось бы, способны понимать и генерировать осмысленный язык, однако на самом деле они лишь повторяют схемы, присущие уже существующим данным, на которых они обучались. Качество субъективно; сами по себе данные – без человеческой оценки – не могут его определить.

Социальная фильтрация информации позволяет обойти эти проблемы, поскольку основана на действиях людей-пользователей, которые самостоятельно оценивают содержание, используя как количественные, так и качественные суждения. Это больше похоже на сарафанное радио, когда мы получаем советы, что послушать или посмотреть, от друзей, чьи предпочтения схожи с нашими собственными: “Объекты рекомендуются пользователю на основе величин, присвоенных другими людьми со сходным вкусом”, – говорилось в статье. Сходство вкусов одного пользователя с другим определялось с помощью статистической корреляции. Чтобы давать музыкальные рекомендации, исследователи разработали систему под названием Ringo, использующую электронную почту. Пользователю предлагали первоначальную группу из 125 исполнителей, он выставлял оценки по шкале от 1 до 7, после чего строилась диаграмма его предпочтений. Затем программа сравнивала эту диаграмму с диаграммами других пользователей и подбирала музыку, которая человеку предположительно понравится (или совсем не понравится – такой вариант тоже был). Рекомендации Ringo также сопровождались указателем уровня уверенности, который выдавал вероятность того, что предложение окажется удачным, и позволял пользователю дополнительно подумать над предложенным алгоритмическим выбором. К сентябрю

1 ... 3 4 5 6 7 8 9 10 11 ... 96
Перейти на страницу:

Комментарии

Обратите внимание, что комментарий должен быть не короче 20 символов. Покажите уважение к себе и другим пользователям!

Никто еще не прокомментировал. Хотите быть первым, кто выскажется?